Computer Vision and Image Understanding 224 (2022) 103555

journal homepage: www.elsevier.com/locate/cviu

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

Computer Vision
and Image
Understanding

RocNet: Recursive octree network for efficient 3D processing n

Juncheng Liu *, Steven Mills, Brendan McCane

Department of Computer Science, University of Otago, Dunedin, New Zealand

Check for
updates

ARTICLE INFO ABSTRACT

Communicated by Nikos Paragios

MSC:

41A05
41A10
65D05
65D17

We introduce a deep recursive octree network for general-purpose 3D voxel data processing. Our network
compresses a voxel grid of any size down to a very small latent space in an autoencoder-like network. We
show results for compressing 323, 64° and 128> grids down to just 80 floats in the latent space. We demonstrate
the effectiveness and efficiency of our proposed method on several publicly available datasets with four
experiments: 3D shape classification, 3D shape reconstruction, shape generation and semantic segmentation.
Experimental results show that our algorithm maintains accuracy while consuming less memory with shorter

training times compared to existing methods, especially in 3D reconstruction tasks.

Keywords:

Recursive

3D shape

Deep representation
Segmentation
Classification

1. Introduction

While neural networks achieve excellent performance in various
tasks in 2D vision, how to effectively process 3D data by neural
networks has recently attracted more attention in both the computer
vision and computer graphics communities. Unlike the unified rep-
resentation of 2D images as pixels, there are many formats widely
used for 3D data such as point clouds (Qi et al.,, 2017a,b, 2018),
volumetric voxels (Wu et al., 2016; Shen and Stamos, 2020), surface
meshes (Groueix et al., 2018) and implicit surface (Park et al., 2019;
Mildenhall et al., 2020). Each of these formats has its advantages
and disadvantages. Point clouds represent 3D data by unstructured
points without imposing topological constraints. However, they bring
difficulties in subsequent applications such as rendering and space
navigation. Surface meshes are most widely used in graphics due to
efficient rendering and modeling flexibility, yet their inherent graph
structure makes it difficult, though not impossible, to process via neural
networks. 3D voxel grids are the straightforward generalization of
2D pixels and are a natural representation of 3D space. For certain
tasks, such as navigation/exploration for robotics, using explicit 3D
occupancy voxel representation makes it easier for subsequent tasks
such as path-planning. But voxel grids are very memory intensive and
memory requirements grow very fast as the size of the grid increases,
making them difficult to apply to fine resolutions or large spaces.

In this paper we present RocNet: a recursive 3D autoencoder net-
work that mimics the structure of an octree. As shown in Fig. 1,

* Corresponding author.
E-mail address: juncheng.liu@otago.ac.nz (J. Liu).

https://doi.org/10.1016/j.cviu.2022.103555

a voxel grid is first converted to a standard octree structure until
each node is homogeneous or a maximum depth is reached. RocNet
recursively merges octants starting from the octree leaves, until the
root is processed. In this way the whole octree can be represented
by a compact 1D feature vector. Since there are a large number of
empty leaves in an octree, our algorithm saves large amount of memory
and computational time. Compared to traditional 3D convolutional
networks, 3D convolution is only performed within octants in our
recursive network hence is less computationally intensive. Memory
savings arise from the octree structure which adapts to the geometry of
the scene, allowing large empty (or otherwise homogeneous) volumes
to be represented compactly.

RocNet is an end-to-end autoencoder that is a recursive, discrimina-
tive, and generative network that is primarily aimed at compressing 3D
voxel structures for representation, discrimination, and generation. The
main contributions of this work are: this is the first method to explore
the combination of volumetric octree and recursive networks; near
state-of-the-art compression ratios; near state-of-the-art recognition on
ModelNet40; state-of-the-art computational and memory consumption
efficiency; state-of-the-art reconstruction accuracy on ShapeNetCorev2
database.

This is an extended version of our conference paper (Liu et al.,
2020). The main extensions are two-fold: we reinforce the genera-
tion ability of RocNet by adding an adversarial training term which
further regularizes the latent shape space; With minor modifications

Received 19 November 2021; Received in revised form 26 August 2022; Accepted 30 August 2022

Available online 6 September 2022
1077-3142/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cviu.2022.103555
http://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2022.103555&domain=pdf
mailto:juncheng.liu@otago.ac.nz
https://doi.org/10.1016/j.cviu.2022.103555

J. Liu, S. Mills and B. McCane

©) Decoder

© Encoder

Fig. 1. RocNet autoencoder structure. Octants are merged recursively in a bottom-up
manner until the root node is encoded. Decoder recursively decodes nodes until leaves
are recovered.

in the structure, we apply RocNet to a semantic segmentation task
and it is proven effective on manually-labeled ShapeNetCore dataset.
Compared to the previous version, we further demonstrate that the
proposed method is applicable and effective to most of tasks of 3D voxel
processing.

2. Related work

The idea of using octrees to efficiently process sparse 3D data
has been intensively explored in deep learning in recent years. These
methods can be roughly classified into two groups: discriminative and
generative networks.

Discriminative octree networks. Discriminative networks are de-
signed to accomplish recognition tasks such as classification and re-
trieval. O-CNN (Wang et al., 2017) uses an octree-based 3D convolu-
tional network by using fast shuffled key and hash table search. Their
method significantly reduces the computational time and storage re-
quirements for 3D convolution by restricting computations to occupied
octants only. OctNet (Riegler et al., 2017a) uses an alternative octree-
based convolutional network where a more efficient convolution is
defined for octants. A major difference between RocNet and the other
methods is RocNet performs convolution only within octants. Convo-
lution is not performed across octants hence is more computationally
efficient.

Generative octree networks. Generative octree networks are able
to generate 3D data in an octree-like manner. Adaptive O-CNN (Wang
et al, 2018) implements an advanced version of O-CNN which is
able to generate models in adaptive patches. HSP (Héne et al., 2017)
predicts high resolution voxel grids from images by using an octree
up-convolutional decoder architecture. OctNetFusion (Riegler et al.,
2017b) is the generative version of OctNet, which reconstructs dense
3D data from multiple depth images by predicting the partitioning of
the 3D space. Similar to our method, OGN (Tatarchenko et al., 2017)
also generates octrees, but their method is aimed at up-sampling from a
coarse regular voxel grid and thus focuses on decoding only. In contrast,
we seek to form an efficient latent space for storing grids of arbitrary
size, where the latent space is not restricted to be grid-like.

Recursive networks. Our method is also related to recursive net-
works which were originally proposed as an effective tool for grammar
tree parsing in natural language (Socher et al., 2011). In computer
graphics, GRASS (Li et al., 2017) employed recursive networks to im-
plement a generative shape structure autoencoder. Their work focuses
specifically on object structures and makes explicit use of object sym-
metries. RocNet focuses on volumetric representation and can also be
used for generic 3D representations such as rooms or buildings. Another
successful application of recursive networks is k-d networks (Klokov
and Lempitsky, 2017) which use a k-d tree to hierarchically process 3D
point clouds, whereas we focus on voxel representations.

Computer Vision and Image Understanding 224 (2022) 103555
Leaf
node
Leaf
node
Leaf
node

Leaf
node

Fig. 2. RocNet autoencoder structure. LE: leaf encoder. NE: node encoder. ND: node
decoder. LD: leaf decoder. NC: node classifier.

3. Recursive octree networks

In this section we will describe the network architecture by which
the octrees are encoded and decoded. The overall structure of the
proposed network is shown in Fig. 2. The network recursively merges
8 child nodes to form their parent node until the root node is encoded.
The insight is that the recursive network easily fits the hierarchical
nature of octrees.

Our network consists of 7 components: leaf, node, and tree en-
coders; leaf, node, and tree decoders; and a node classifier. The octree
is encoded from the leaves up. The leaf encoder encodes the leaves
and produces a multi-channel 3D code for each leaf. For each non-leaf
node, the node encoder combines codes from each of its children until
the root is reached, again producing a multi-channel 3D code for each
node. Finally the tree encoder converts a multi-channel 3D code into
a compact 1D feature vector. To produce an octree from a compact
code, the corresponding decoders reverse the encoding process. The only
difference is that we need to determine if a given node is an internal
node or a leaf and the node classifier is used to make that determination.
We describe the octree representation and each component in more
detail in the following sections.

3.1. Octree representation

An octree decomposes a 3D space recursively until it contains
homogeneous content (all voxels inside a leaf should be consistently
occupied or empty) or a given maximum depth is reached. In the
proposed algorithm, we adopt the octree representation as the input
format of our neural network.

An example of an octree structure is presented in Fig. 3. For simplic-
ity, we illustrate a quad-tree on a 2D grid instead of an actual octree
on a 3D grid. We define 4 types of octants: empty leaf (unoccupied
leaf octants), full leaf (fully occupied leaf octants), mixed leaf (partially
occupied leaf octants) and interior node (non-leaf octants) as shown in
Fig. 3(f). An octree can be therefore represented as two separate parts:
tree topology and its mixed leaves. Empty and full leaves do not need
storage and can be directly recovered from tree topology.

Tree topology representations. To encode octree topology, we use
a post-order Depth-First Search (DFS) ordering. As shown in Fig. 3(d),
the octants of a 3 layer octree are serialized by the post-order DFS: it
starts at the root node and goes as far as it can down its child nodes
from left to right, then visit itself and backtracks.

Mixed leaf representations. We collect all mixed leaf nodes in an
octree in the order defined above, forming a 4D binary matrix. In the
example shown in Fig. 3(e), the maximum depth is 1 and two mixed
leaf nodes are extracted. To clearly demonstrate the advantages of our
proposed structure, we simply use binary occupancy encoding across all
our experiments. However, other representations such as color values,
real-valued occupancy probability, or surface normals could also be
easily integrated into our algorithm in this step.

J. Liu, S. Mills and B. McCane

(a) (b) (c)

03 O 0: Empty leaf
3
] 2 @® 1: Full leaf
0 A o 3 "
8::% 8 : 8 3 @ 2: Mixed Leaf
© 3: Interior node
0011033 21023

Computer Vision and Image Understanding 224 (2022) 103555

(d)) ()

Fig. 3. Example of an octree, although a quad-tree is shown for simplicity. (a)-(c) depth 2 to 0 (root) of an occupancy octree. Black square indicates occupied octants and white
square indicates empty ones. Mixed nodes are represented as gray squares. (d) octree structure of maximum depth 2 and its corresponding structure code. (e) octree structure of

maximum depth 1 and its corresponding structure code. (f) 4 defined node types.

|:| ND
VAN AN
e

OmOC MO
LE LD

(a) encoder (b) decoder

Fig. 4. Node encoder and decoder. Solid arrows are 3D convolution and batch
normalization. Dotted arrows are empty/full leaf skips. A quad-tree is shown here for
simplicity.

3.2. Recursive octree encoder

Generally speaking, the encoders encode leaf nodes, interior nodes,
and eventually the whole octree into features as shown in Fig. 4(a).

Leaf encoder. Explicit leaf nodes need to be converted into rec-
ognizable features before being fed into the recursive network. In
comparison with a traditional recursive autoencoder (Socher, 2014)
(RAE) that encodes nodes into 1D features, our method encodes a
leaf node into a 4D feature with fixed dimensions using several 3D
convolutional layers of kernel size 4 and stride 2. The number of
channels of feature maps is set to 16, 32 and 64. We use the exponential
linear unit (Clevert et al., 2015) (ELU) function (f xX € R
max(0, x) + min(0,e* — 1)) as the activation function and add a batch
normalization (BN) layer after each 3D convolution layer. Our network
is free of a pooling layer. Therefore the sequence of a leaf encoder is
several layers of “3DConv + BN + ELU”. The leaf encoder therefore
is a mapping: Bk s ROXBEXEwhere B = (0,1}, k is the leaf
resolution (we set k = 32 for voxels with a resolution higher than
323 and k = 16 for 323), and 64 is the number of output channels.
Since there are a large number of empty and full leaf nodes, applying
3D convolution to them is unnecessary and time-consuming, hence
we pass these leaves directly to the next stage without applying 3D
convolutions. We call these “leaf skips” as shown in Figs. 4(a) and 4(b).

Node encoder. We first lift the number of channels of child nodes
from 64 to 128 by a 1 x 1 x 1 sized kernel 3D convolutional layer
denoted as ¢ : RO 1y RI28xH4x4 and then merge the nodes into
an interior parent node. The inverse of ¢, denoted as v, is applied
to the parent node which maps number of channels back to 64. We
use “additive merging” for all encoders of this kind, that is, every
child node is first applied with a 3D convolution followed by a batch

normalization layer, and then added together to form the parent node:

8

F, =y() ELU$(F))), ¢8)
i=1

F, : RO, pbdbxdxdxd This encoder is applied recursively until

the root node is encoded. Note that node encoders for different depth

do not share weights.

Tree encoder. After obtaining the feature of the root node, the
whole octree is encoded to a single feature map of 64 x 4 x 4 x 4.
The tree encoder is applied to flatten the feature map into a single 1D
feature vector. We achieve this by simply employing a 3D convolutional
layer with kernel size 4 and stride 1. The number of channels is set to
the dimensions of the feature vector. The tree encoder then is a map:
ROMA4x4 s R, In our implementation d,, is set to 80 across all
experiments.

3.3. Recursive octree decoder

The decoders simply reverse the above process using transposed
convolutions instead of convolutions.

Tree decoder. This decoder converts a 1D feature back to a 4D
feature by a transposed convolutional layer and a non-linear activation
layer ELU. To transform feature vectors back to the above defined
dimensions, we use a kernel of size 4 and stride 1.

Node decoder. After decoding the tree we obtain the 4D feature for
the root node. We then apply the node decoder to it recursively until
leaf nodes are decoded. This decoder consists of a 3D convolutional
layer for the node itself and a convolutional layer for each its 8 child
nodes followed by a batch normalization layer as shown in Fig. 4(b).
Note that node decoders for different depth do not share weights.

Leaf decoder. When a node is recognized as a leaf it will be decoded
by a leaf decoder which recovers the features back to explicit binary
occupancy voxel grids. Note that leaf skips will also be applied in
the leaf decoder for efficiency, i.e. only leaves recognized as mixed
need to be decoded. This decoder consists of several stacked transposed
3D convolutional layers of kernel size 4 stride 2 and padding 1. This
operation will enlarge the voxel size from 4 to k which is the dimension
of explicit representation we used for leaves. All layers are followed by
batch normalization layers and ELU activation with the exception of
the final layer which is activated by a sigmoid non-linearity without
batch normalization.

3.4. Node classifier

A node classifier is a 4-category classifier trained during the de-
coding process in order to recover the octree topology. Note that the
classifier is not involved in encoding, as at that stage the type of
each node is known. This classifier labels each node one of the 4

J. Liu, S. Mills and B. McCane

Table 1
Comparison of model size. Numbers of trainable parameters are shown. RocNet is
followed by resolution and the leaf size.

Size Size
PointNet (Garcia-Garcia et al., 2016) 80M RocNet-64-32 1.42M
3DShapeNets (Wu et al., 2015) 38M RocNet-128-32 1.70M
VoxNet (Maturana and Scherer, 2015) 0.92M RocNet-256-32 1.98M
LightNet (Zhi et al., 2018) 0.3M RocNet-512-32 2.25M
VRN-ensemble (Brock et al., 2016) 90M RocNet-1024-32 2.53M

FusionNet (Hegde and Zadeh, 2016) 118M RocNet-2048-32 2.80M

aforementioned node types. It has the same layers as tree encoder
except for an additional fully-connected layer. We use cross-entropy as
the loss function. The node classifier is disabled during training and is
only used for prediction in the testing stage. The predicted label is used
to decide whether to stop decoding (empty/full leaf) or to decode using
leaf decoder (mixed leaf) or node decoder (interior node).

3.5. Loss function

The loss function in our algorithm has two separate parts: the node
labeling loss, £, and the leaf reconstruction loss, £,:

L=C,+L,.)

Node labeling loss. We use cross-entropy loss given by node clas-
sifier as the node labeling loss:

4
€=~ ¢;log(s). 3)

where ¢; and s; are the ground-truth and node classifier score for 4 node
types. The node label loss of an octree is the sum of label losses of all
nodes.

Reconstruction loss. Decoded leaves are used to calculate the
reconstruction loss and we use a weighted binary cross-entropy as the
loss function:

L, = —atlog(o) — (1 —1)log(1 — o), (©)]

where t+ € {0,1} is the ground-truth occupancy value and o € (0,1)
is the output of the leaf decoder for each individual voxel. The weight
parameter « is employed because the number of empty voxels is usually
much larger than occupied ones. In most cases, a should be larger than
1 for elimination of false negatives. In our implementation we use a = 5
across all experiments. The reconstruction loss of an octree is the sum
of the reconstruction losses across all its mixed leaves.

Algorithm 1 RocNet node encoder and decoder

procedure ENcopING(NODE)
if node.is_leaf() then return LeafEncoder(node)
else
for k < 1 to 8 do
child < child + Encoding(node.get child(k))
return y(child)
procedure DECODING(NODE)
if node.pred_leaf() then LeafDecoder(node)
else
for k < 1 to 8 do
Decoding(node.get child(k))

3.6. Complexity analysis

In this section we analyze the model size as well as the com-
putational time and space complexity of our proposed method both
analytically and empirically.

Computer Vision and Image Understanding 224 (2022) 103555

Generally speaking, our method benefits from the recursive struc-
ture and hence can be regarded as a lightweight and scalable model.
With the increase of input voxel resolution, the number of trainable pa-
rameters of our model increases linearly with respect to the logarithm
of input/leaf resolutions: O(log(N /k)) where N is the input resolution
and k is the leaf size (both should be a power of 2). Table 1 shows
the model size of our method (right column) and other comparison
methods (left column). Since all the other methods were designed
specifically for classification, we show the number of trainable param-
eters of the encoder part of our model for a fair comparison. The total
size of our model is approximately twice that shown as the encoder and
decoder have roughly the same architecture. For our method we present
models for 6 different resolutions. Each method is labeled as RocNet-
N — k and k is set to 32. RocNet-256-32, for instance, accommodates
an input voxel grid of size 256 x 256 x 256. The actual number of
trainable parameters shown in Table 1 coincides with our analysis.
Among the comparison methods, VoxNet (Maturana and Scherer, 2015)
and LightNet (Zhi et al., 2018) are also lightweight yet their models
only consider a fixed voxel grid of 32 x 32 x 32 as they were designed
for classification. This resolution should be adequate for a classification
task. For more resolution-intensive tasks such as reconstruction and
generation, it will lead to severe artifacts and imperfection.

The space and time complexity of our method are O((N/k)?) and
O(log(N /k)) respectively. The space complexity roughly depends on the
number of mixed leaves which, in worst case, is (N /k)*. However, the
mixed leaves usually make up only a very small population in all leaves.
Therefore our method enjoys a moderate memory consumption even
for 256 x 256 x 256 volumes, which easily fits on a modern GPU.
Since the nodes within the same depth can be processed in parallel,
the computational time for an octree is related to its depth, which is
3logg (N /k).

4. Experiments and comparisons
4.1. Experiments setup

We evaluate RocNet on four representative tasks: 3D shape clas-
sification, 3D shape reconstruction, 3D shape generation, and 3D se-
mantic segmentation. The implementation of our algorithm is based
on PyTorch (Paszke et al., 2019) and TorchFold (Polosukhin and Za-
vershynskyi, 2018) for dynamic batching. All experiments were done
on a server with Intel Core i7-6700K CPU (4.00 GHz) and a GeForce
GTX Titan X GPU (12 GB memory). We set leaf size k = 16 for
voxel size N = 32 and k = 32 for all the other input resolutions
across all experiments. To clearly demonstrate the advantages of our
proposed method, we simply use binary occupancy voxels as input in
all experiments. However, the performance can be further improved by
employing a more informative input format such as surface normal and
truncated signed distance function. Variations of input formats can be
easily integrated into our network.

4.2. 3D shape classification

Dataset. We perform the classification task on the ModelNet40
dataset (Wu et al., 2015). This dataset contains 12,311 labeled CAD
meshes from 40 categories. It is split into training (9843) and test-
ing (2468) sets and the training set is augmented by rotating each
sample 12 times along its upright axis uniformly. Since the original
representation of these 3D shapes is a triangular mesh, to use our
proposed method, the mesh needs to be converted to 3D voxel grids by
voxelization. We generate their voxel representations at four different
resolutions for each of the samples: 32, 64, 128, and 256.

Network architecture. We simply use the encoder architecture as
feature extractor followed by an additional fully-connected layer, a
dropout layer and a softmax layer. The input of the fully-connected
layer is the output of the tree encoder defined in Section 3.2.

J. Liu, S. Mills and B. McCane

Fig. 5. Qualitative comparisons. Top-left: original model. Top-right: binary O-CNN
reconstruction. Bottom-left: patch-based O-CNN and bottom-right: our result'. 128° is
used for all three methods. Our RocNet has fewer missing regions than the other two
methods.

Results and discussion. The classification results are shown in Ta-
ble 2. We compare our method with 4 other alternatives:
3DShapeNets (Wu et al., 2015), VoxNet (Maturana and Scherer, 2015),
Geometry image (Sinha et al., 2016) and O-CNN (Wang et al., 2017),
all of which are voxel-based methods with the exception of Geometry
image.

Similar to previous literature, our method achieves the best result
when input voxel resolution has size 32 and the performance begins
to drop slightly when the resolution increases. The reason is that cat-
egories in ModelNet40 are visually different even at a low resolution,
hence less detail is required and 32° is adequate for distinguishing one
class from another. From Table 2, it can be observed that resolutions
higher than 32° leads to small amounts of overfitting.

Our method has inferior accuracy compared to that of O-CNN (Wang
et al., 2017), which is partly due to the influence of the input data. In
their implementation they used more informative surface normals as
input while in our experiments, we simply use the binary occupancy
voxel grid. They have shown in their paper that there is approximately
a 2% drop in accuracy by using binary input. Another reason is that
instead of using max-pooling, we employ convolution of stride 2 in
the leaf encoder which could lead to fewer patterns being captured.
We did an additional experiment where we substituted the 2-stride
convolution with 1-stride convolution followed by a max-pooling layer.
The accuracy of 32° increases from 85.5% to 86.7%. However, this
substitution increases the memory requirements of the network.

Note that the focus of this paper is mainly 3D shape autoencoder,
we show in this section that by simply using the encoder our method
can be easily converted into a lightweight classifier with good accuracy.

4.3. 3D shape reconstruction

Datasets. To evaluate 3D shape reconstruction, we employ two
datasets: ShapeNet-Car and ShapeNetCorev2 (Chang et al.,, 2015).
ShapeNet-Car contains 7497 car CAD models. ShapeNetCorev2 consists
of 39,715 3D models from 13 categories.

Training protocol. We use batchsize = 50 in training. The average
total number of iterations is around 300 for each class. Training takes
approximately 20 h for a class containing 2000 samples in 1283 resolu-
tion. For both ShapeNet-Car and ShapeNetCorev2 we split training and
testing sets by 80% and 20%, respectively, as done by Groueix et al.
(2018) and Wang et al. (2018). Note that the ground-truth node type
is used in the training stage to choose the correct decoder. In the test
stage, the type of a node is predicted by the trained node classifier.

Measurements. We show the qualitative reconstruction results in
Figs. 5 and 6. For more visual reconstruction results please refer to the
supplementary materials. For quantitative measurements, we use inter-
section over union (IoU) for ShapeNet-Car and Chamfer distance for

1 Pictures of binary O-CNN and patch-based O-CNN are from Wang et al.
(2018).

Computer Vision and Image Understanding 224 (2022) 103555

(a) 323 (b) 643 (c) 1283

Fig. 6. Car reconstruction examples of different resolutions. Top row: ground-truth
voxels. Bottom row: reconstructed voxels.

Table 2

3D shape classification accuracy on ModelNet40 dataset. Voxel-based methods are
followed by their tested resolution. RocNet is followed by its resolution and the leaf
size.

acc. acc.
3DShapeNets(32) 77.3% RocNet(32-16) 85.5%
VoxNet(32) 83.0% RocNet(64-32) 85.0%
Geometry image 83.9% RocNet(128-32) 84.4%
OCNN(32) 89.6 % RocNet(256-32) 84.1%
Table 3

Reconstruction accuracy on ShapeNet-Car dataset. Numbers shown are intersection over
union (IoU%) between reconstructed and ground-truth voxel in 3 different resolutions.
Accuracy for OGN and dense in 128 is not reported in their paper. Boldfaced numbers
emphasize the best results.

OGN-p OGN-k Dense RocNet-p RocNet-k
32 92.4 93.9 92.4 95.1 94.6
64 88.4 90.4 89.0 92.0 92.0
128 - - - 87.0 87.5

Table 4

Computational efficiency on ShapeNet-Car dataset. Averaged GPU memory usage and
time for one iteration are shown. Batch size is set to 1. Boldfaced numbers emphasize
the best results.

Memory (GB) Time (s)

OGN RocNet OGN RocNet
32 0.29 0.017 0.016 0.05
64 0.36 0.026 0.06 0.06
128 0.43 0.089 0.18 0.10

ShapeNetCorev2 dataset. This is mainly for the purpose of comparison
with existing methods. Using IoU is straightforward since our network
produces binary voxels. Chamfer distance is usually used for evaluating
the performance of surface-generating methods such as Groueix et al.
(2018) and Wang et al. (2018). To compare with this group of methods,
we densely sample a set of points, P, from the boundary voxels and a
set of points, G, from the ground-truth mesh. The Chamfer distance is
calculated as:

1 . 2 1 . 2
dP,C) = — — — — 2. 5
(N 7] xezpfynelg lIx = yll* + ici xezgryrg]r)l llx =yl)

Results and comparisons. Fig. 5 shows that RocNet produces
fewer missing regions (the wheels) compared to O-CNN and patch-
based O-CNN, which explains why RocNet outperforms the rest in
the following quantitative analysis. We also observe the reconstructed
shapes are more blurred than the ground-truth voxels (see the details
of wheels at 128> resolution in Fig. 6).

IoU accuracy of the ShapeNet-Car dataset and the that of OGN
(Tatarchenko et al., 2017) is shown in Table 3 and computational
requirements are shown in Table 4. The Chamfer distance results
of ShapeNetCorev2 are shown in Table 5. These results show that
RocNet outperforms OGN at all three resolutions with lower memory
consumption and faster execution time. Similar to OGN, we also test

J. Liu, S. Mills and B. McCane

Table 5

Computer Vision and Image Understanding 224 (2022) 103555

Chamfer distance tested on ShapeNetCorev2 dataset. The Chamfer distance is multiplied by 10° for better display. Boldfaced numbers emphasize the best results. Results of PSG
and AtlasNet are from Groueix et al. (2018). Results of O-CNN and Adaptive-OCNN are provided in Wang et al. (2018).

avg. pla. ben. cab. car. cha. mon. lam. spe. fir. cou. tab. cel. wat.

PSG 1.91 1.11 1.46 1.91 1.59 1.90 2.20 3.59 3.07 0.94 1.83 1.83 1.71 1.69

AtlasNet(125) 1.51 0.86 1.15 1.76 1.56 1.55 1.69 2.26 2.55 0.59 1.69 1.47 1.31 1.23

OCNN 1.60 1.12 1.30 1.06 1.02 1.79 1.62 3.71 2.56 0.98 1.17 1.67 0.79 1.88

Adaptive OCNN 1.44 1.19 1.27 1.01 0.96 1.65 1.41 2.83 1.97 1.06 1.14 1.46 0.73 1.82

RocNet 1.05 0.49 1.34 1.09 0.83 1.29 0.74 2.32 1.58 0.73 0.80 0.91 0.72 0.82
Table 6

Shape segmentation accuracy and mloU. We compare our method with four alternatives (Guo et al., 2015; Kalogerakis et al., 2017; Wang and Lu, 2019; Hegde and Gangisetty,
2021). Guo et al. (2015) and Kalogerakis et al. (2017) are reported in accuracy while Wang and Lu (2019) and Hegde and Gangisetty (2021) are reported in mlIoU. For each
category we show the number of training/test samples as well as the number of parts. In the last four rows we show the mean accuracy either category-wise or sample-wise. The

averaged accuracy of categories which have more than 3 parts is also reported.

#train/test #parts Guo ShapePFCN RocNet(acc) Wang PIG-Net RocNet(mlIoU)

Airplane 250/250 4 87.4 90.3 90.2 86.2 84.2 80.5
Bag 38/38 2 91.0 94.6 93.2 88.7 83.1 68.0
Cap 27/28 2 85.7 94.5 90.0 91.9 88.9 77.5
Car 250/250 4 80.1 86.7 81.9 79.8 78.6 65.5
Chair 250/250 4 66.8 82.9 88.3 92.0 91.7 80.0
Earphone 34/35 3 79.8 84.9 75.1 76.5 78.2 62.8
Guitar 250/250 3 89.9 91.8 92.7 92.0 94.4 84.4
Knife 196/196 2 77.1 82.8 86.7 86.4 89.5 77.7
Lamp 250/250 4 71.6 78.0 80.0 84.2 94.2 62.5
Laptop 222/223 2 82.7 95.3 95.6 96.1 96.3 92.0
Motorbike 101/101 6 80.1 87.0 87.0 78.4 66.2 64.9
Mug 92/92 2 95.1 96.0 97.1 96.3 91.6 86.0
Pistol 137/138 3 84.1 91.5 91.5 83.7 85.1 77.2
Rocket 33/33 3 76.9 81.6 75.9 65.4 64.8 52.4
Skateboard 76/76 3 89.6 91.9 92.6 77.0 93.5 75.7
Table 250/250 3 77.8 84.8 90.5 86.2 94.2 75.6
Avg.(Category) - - 82.2 88.4 88.0 - 85.9 73.3
Avg.(Category >3) - - 77.2 85.0 85.4 - - -

Avg.(Dataset) - - 80.6 87.5 88.3 87.5 90.5 76.0
Avg.(Dataset >3) - - 76.8 84.7 84.9 - - -

Train Test

GT

Fig. 7. Multi-resolutional reconstruction.

recons

our algorithm in two modes: with and without octree structure known.
In the octree-prediction mode (named as “RocNet-p”), the type of
each node is predicted by the node classifier while in octree-known
mode (named as “RocNet-k”), the octree structure is given during
decoding. Specifically, the node classifier is disabled in octree-known
mode. Intuitively, less information is encoded in octree-known mode
hence higher reconstruction accuracy should be achieved. However,
as shown in the last two column of Table 3, these two modes have
very similar accuracy. This implies that the capacity of the hidden
representation is sufficient to store both the octree topology and the
leaves. This validates our choice of 64 x 4 x 4 x 4 voxels for the
hidden representation since using a higher resolution would not lead
to a significant increase in accuracy. The rest of our experiments use
prediction mode only.

We also report the GPU memory usage and the computational
time for one single training iteration in Table 4. It coincides with the
complexity analysis in Section 3.6. For all three resolutions tested, our
algorithm consumes far less memory than OGN. We also observe our
algorithm has a larger relative increase in memory compared to OGN,

Fig. 8. Model generation results. Top row: 5 generated models. Bottom row: nearest
model in training samples.

GAN

real
Dis /

LE OE -—» OD LD
\fake

.-------..---.

Fig. 9. Adversarial autoencoder structure.

but a smaller increase in time. According to the complexity analysis,
the memory consumption increases cubically with N. We expect our
algorithm to take more memory with larger resolutions. However, it is
still tractable when processing a 5123 voxel grid in our experiments.
Table 5 shows the reconstruction accuracy on the ShapeNetCorev2
dataset, as measured by the Chamfer distance. Compared to ShapeNet-
Car, this has a more diverse range of samples. We compare our method
with four alternative schemes: PSG (Fan et al., 2017), AtlasNet (Groueix
et al., 2018) with 125 predicted mesh patches, O-CNN (Wang et al.,
2017) and Adaptive O-CNN (Wang et al., 2018), among which PSG is

J. Liu, S. Mills and B. McCane

Computer Vision and Image Understanding 224 (2022) 103555

Fig. 10. Shape interpolation.

Fig. 11. Segmentation structure. Dotted lines: skip connections.

the only point set generating method while the others generate meshes.
For comparison, we calculate the Chamfer distance in the same protocol
as for O-CNN. RocNet has the best performance in most categories
followed by Adaptive O-CNN and AtlasNet. It is worth noticing that
since RocNet generates voxels instead of a mesh, there is an intrinsic
inaccuracy between the cube-like voxels and the smooth mesh. Mesh-
based methods such as Adaptive O-CNN and AtlasNet do not suffer from
this drawback. We expect our method to perform even better with a
patch-based representation, which is an area for future work.

To demonstrate the flexibility of our multi-resolution architecture,
we train the networks on a mixture of 64° and 128 voxel grids with
equal population and the reconstruction still works well as shown in

Fig. 7. In this case each encoder/decoder learns multiple resolutions
flexibly.

4.4. 3D shape generation

In this section we present the results of shape generation using
RocNet. We first generate new shapes by the default autoencoder
structure and then we augment the loss function with an adversarial
term to achieve more plausibility.

Fig. 8 shows five models generated by a RocNet autoencoder trained
on the ShapeNet-Car dataset. We generate new models by randomly
sampling within the convex hull of the trained samples in 80D feature
space. Please note that the octree topology is generated on the fly
in this experiment since it is impossible to obtain the ground-truth
which exists in reconstruction task. From Fig. 8 we observe that RocNet
is able to establish a semantically plausible shape manifold where
each generated model can be visually identified as a car. We also
present the corresponding training model closest to the sampled point
in feature space. Some generated models are very similar to existing
models such as the first example. There also exist some examples where
there are visible differences between existing ones. This indicates that
RocNet has captured some semantic information from training samples.
However, when we try to morph between shapes, we observe some

J. Liu, S. Mills and B. McCane

Computer Vision and Image Understanding 224 (2022) 103555

570 &e
X

Fig. 12. Segmentation examples. Row 1,3 and 5 contain 6 ground-truth shapes respectively. Row 2,4 and 6 show the corresponding segmented shapes. Each color indicates an
individual part. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

noisy intermediate shapes. This indicates simply using the autoencoder
loss might be insufficient to regularize the space.

In order to preserve more plausibility in generated shapes, we
integrate our autoencoder with an adversarial (GAN Goodfellow et al.,
2014) term. The resulting network is shown in Fig. 9. It features an
autoencoder structure as well as an adversarial component. For the
discriminator, we first tried to use the same structure as the recursive
encoder used in 4.3. However, the performance was not satisfactory.
As a minor modification, we use 3D convolutional layers instead of
recursive layers for the discriminator, the output of which is a real
number produced by sigmoid non-linearity indicating the confidence of
real samples. The decoder remains a recursive structure, and is shared
by both the autoencoder and the GAN component.

We show several shape morphing examples in Fig. 10. In each
row the shape morphs from the left to right by linearly interpolating
between two feature vectors in the latent space. The interpolated
feature vector is then fed into the octree decoder for decoding. The
intermediate shapes preserve plausibility while smooth changes are
observed. This is due to the adversarial term we add to the loss
function, which further regularizes the latent space.

4.5. 3D shape segmentation

Datasets. We adopt ShapeNetCore dataset for the evaluation of seg-
mentation. The ground-truth segmentations are manually labeled (Yi
et al., 2016). There are 17,773 expert-verified segmentations of 3D
models across 16 categories in the dataset. The training and test sets
are roughly equally split within each category. To compare with the
existing methods fairly we use the same splits as used in Kalogerakis
et al. (2017).

Network architecture. We use RocNet for 3D semantic segmenta-
tion with minor modifications. The segmenting network has a U-shape
as shown in Fig. 11. The input and output are multi-channel 3D
voxels indicating the confidence for each semantic category instead
of binary occupancy as used in reconstruction. Additionally, we add
skip-connections between the corresponding octants in encoder and
decoder. With skip connections, more fine-grained details and low-level
features (Ronneberger et al., 2015) can be recovered in the prediction.

Measurements. Similar to Kalogerakis et al. (2017), the labeling
accuracy of a mesh is given by the percentage of the correctly labeled
points sampled on the mesh (Yi et al., 2016). Since our method seg-
ments volumetric octrees instead of polygonal meshes, we first map

J. Liu, S. Mills and B. McCane

voxel labels to the corresponding polygon faces, and the labelings of
sampled points are obtained by mapping from the faces they belong to.
We use 128 x 128 x 128 resolution across all our experiments.

Results and comparisons. Segmentation accuracy is reported in
Table 6, and examples of segmented shapes are shown in Fig. 12.
We achieve comparable results to Kalogerakis et al. (2017) and better
performance than (Guo et al., 2015). One major difference between
our method and many existing ones is our method segments voxels
directly instead of meshes or views, but the 3D convolution can require
more training data to escape from overfitting. This also explains why
for classes with very limited training samples such as Cap, Earphone
and Rocket, our method has inferior performance compared to view-
based (Kalogerakis et al., 2017) and mesh feature-based (Guo et al.,
2015) methods. The other reason is that Kalogerakis et al. (2017)
is initialized with filters pre-trained on image processing tasks (Yu
and Koltun, 2015) while our method is only trained by the provided
3D shapes in the dataset. As reported in Kalogerakis et al. (2017), a
degraded variant of their method without pretraining has an accuracy
of 86.3% while ours is 88.0%. Furthermore, they use a CRF term for
better integration of segmented views. We could also integrate such a
term for higher accuracy, but restrict ourselves to the simple case in
order to clearly illustrate the effectiveness of our proposed structure.

In addition to the segmentation accuracy, we also report comparison
results with two dedicated semantic segmentation methods (Wang and
Lu, 2019; Hegde and Gangisetty, 2021) in mloU (mean intersection
over union). The results are shown in last 3 columns of Table 6.

We use the same protocol as used in Wang and Lu (2019). For
each shape, IoUs of all parts are averaged to obtain the mloU. Per
category average mloU is computed by averaging across all shapes
within the certain category. Dataset mloU is computed through a
weighted average of per category mloU with the weights being the
number of shapes in each category. We observe a drop in mlIoU for
categories such as earphone, lamps. This drop is due to the fact that
voxel resolution we used (128) is relatively low for dense point-cloud
segmentation tasks. In this case, the voxels are not fine-grained enough
to accommodate tiny (such as airplane engines) and non-rigid parts
(such as earphone line and car wheels). Improvements can be made
by using higher resolutions or using pointcloud-based leaf encoder and
decoder.

Since our method directly segments 3D voxels, it can be easily
applied to many scenarios where a clean mesh is not available or
polygonal mesh representation is not preferred such as robotics naviga-
tion and self-driving applications. For these applications methods such
as Guo et al. (2015) and Kalogerakis et al. (2017) might be inapplicable.

5. Conclusion and future work

We propose a general-purpose recursive octree-based network
which is demonstrated to be effective in multiple 3D processing tasks
such as classification, reconstruction, generation and semantic segmen-
tation. It encodes and decodes octrees by either recursively merging
or producing octants. Our key insight is the recursive nature of the
proposed network fits the hierarchical feature of octrees well. By using
an octree representation we are able to save a large amount of storage
and computational time and higher accuracy is achieved compared
to existing methods for 3D shape reconstruction and generation. The
architecture also provides good results for 3D shape classification
and semantic segmentation. We demonstrated the advantages of our
method by four experiments. The complexity of our method is analyzed
both theoretically and empirically.

Our proposed method can be directly applied to explicit voxels.
However, our method is more of an efficient way of recursively dividing
and combining the space. So it is also possible to apply it to other repre-
sentations such as pointclouds with certain modifications. Specifically,
we need a pointcloud-based leaf encoder instead of a 3D convolutional
NN. The rest of the architecture will remain the same.

Computer Vision and Image Understanding 224 (2022) 103555

A promising improvement to RocNet is to use more input informa-
tion. As suggested by existing work (Wang et al., 2019, 2017), using
more informative input information such as normals or a truncated
signed distance field leads to better performance. RocNet is compatible
with arbitrary input formats as long as it dose not violate the sparseness
of 3D data. This sparseness arises naturally from the fact that surfaces
in the world form manifolds in 3D space. We will also explore the
possibility of directly generating meshes as output of the network.

CRediT authorship contribution statement

Juncheng Liu: Conceptualization, Methodology, Software, Inves-
tigation, Writing — original draft. Steven Mills: Supervision, Project
administration, Funding acquisition, Writing — review & editing. Bren-
dan McCane: Supervision, Project administration, Funding acquisition,
Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This project was funded by Science for Technological Innovation?
under the spearhead project: Adaptive learning robots to complement
the human workforce.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cviu.2022.103555.

References

Brock, A., Lim, T., Ritchie, J.M., Weston, N., 2016. Generative and discriminative voxel
modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236.

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., et al., 2015. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012.

Clevert, D.-A., Unterthiner, T., Hochreiter, S., 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

Fan, H., Su, H., Guibas, L.J., 2017. A point set generation network for 3d object
reconstruction from a single image. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 605-613.

Garcia-Garcia, A., Gomez-Donoso, F., Garcia-Rodriguez, J., Orts-Escolano, S., Ca-
zorla, M., Azorin-Lopez, J., 2016. Pointnet: A 3d convolutional neural network
for real-time object class recognition. In: 2016 International Joint Conference on
Neural Networks. IJCNN, IEEE, pp. 1578-1584.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Advances in Neural
Information Processing Systems. pp. 2672-2680.

Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M., 2018. A papier-méché
approach to learning 3d surface generation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 216-224.

Guo, K., Zou, D., Chen, X., 2015. 3D mesh labeling via deep convolutional neural
networks. ACM Trans. Graph. 35 (1), 1-12.

Héne, C., Tulsiani, S., Malik, J., 2017. Hierarchical surface prediction for 3d object
reconstruction. In: 2017 International Conference on 3D Vision (3DV). IEEE, pp.
412-420.

Hegde, S., Gangisetty, S., 2021. PIG-Net: Inception based deep learning architecture for
3D point cloud segmentation. Comput. Graph. 95, 13-22.

Hegde, V., Zadeh, R., 2016. Fusionnet: 3d object classification using multiple data
representations. arXiv preprint arXiv:1607.05695.

Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S., 2017. 3D shape segmentation
with projective convolutional networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3779-3788.

Klokov, R., Lempitsky, V., 2017. Escape from cells: Deep kd-networks for the recogni-
tion of 3d point cloud models. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 863-872.

2 https://www.sftichallenge.govt.nz/.

https://doi.org/10.1016/j.cviu.2022.103555
http://arxiv.org/abs/1608.04236
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1511.07289
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb5
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb6
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb6
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb6
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb6
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb6
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb8
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb8
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb8
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb9
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb9
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb9
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb9
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb9
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb10
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb10
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb10
http://arxiv.org/abs/1607.05695
https://www.sftichallenge.govt.nz/

J. Liu, S. Mills and B. McCane

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L., 2017. Grass: Generative
recursive autoencoders for shape structures. ACM Trans. Graph. 36 (4), 1-14.
Liu, J., Mills, S., McCane, B., 2020. RocNet: Recursive octree network for efficient 3D
deep representation. In: 2020 International Conference on 3D Vision (3DV). pp.

414-422. http://dx.doi.org/10.1109/3DV50981.2020.00051.

Maturana, D., Scherer, S., 2015. VoxNet: A 3D convolutional neural network for real-
time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS, pp. 922-928.

Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolutional neural network for real-
time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS, IEEE, pp. 922-928.

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.,
2020. Nerf: Representing scenes as neural radiance fields for view synthesis. In:
European Conference on Computer Vision. Springer, pp. 405-421.

Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S., 2019. Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
165-174.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. Py-
Torch: An imperative style, high-performance deep learning library. In: Advances in
Neural Information Processing Systems, Vol. 32. Curran Associates, Inc., pp. 8024—
8035, URL http://papers.neurips.cc/paper/9015- pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

Polosukhin, 1., Zavershynskyi, M., 2018. Nearai/torchfold: v0.1.0. http://dx.doi.org/10.
5281/zenodo.1299387.

Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J., 2018. Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 918-927.

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 652-660.

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30.

Riegler, G., Osman Ulusoy, A., Geiger, A., 2017a. Octnet: Learning deep 3d represen-
tations at high resolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 3577-3586.

Riegler, G., Ulusoy, A.O., Bischof, H., Geiger, A., 2017b. Octnetfusion: Learning depth
fusion from data. In: 2017 International Conference on 3D Vision (3DV). IEEE, pp.
57-66.

10

Computer Vision and Image Understanding 224 (2022) 103555

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 234-241.

Shen, X., Stamos, I., 2020. Frustum VoxNet for 3D object detection from RGB-D or
Depth images. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. pp. 1698-1706.

Sinha, A., Bai, J., Ramani, K., 2016. Deep learning 3D shape surfaces using geometry
images. In: European Conference on Computer Vision. Springer, pp. 223-240.
Socher, R., 2014. Recursive Deep Learning for Natural Language Processing and

Computer Vision (Ph.D. thesis). Citeseer.

Socher, R., Lin, C.C.-Y., Ng, A.Y., Manning, C.D., 2011. Parsing natural scenes and
natural language with recursive neural networks. In: ICML.

Tatarchenko, M., Dosovitskiy, A., Brox, T., 2017. Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 2088-2096.

Wang, C., Cheng, M., Sohel, F., Bennamoun, M., Li, J., 2019. NormalNet: A voxel-based
CNN for 3D object classification and retrieval. Neurocomputing 323, 139-147.
Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X., 2017. O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. ACM Trans. Graph. 36 (4),

1-11.

Wang, Z., Lu, F., 2019. VoxSegNet: Volumetric CNNs for semantic part segmentation
of 3D shapes. IEEE Trans. Vis. Comput. Graphics 26 (9), 2919-2930.

Wang, P.-S., Sun, C.-Y., Liu, Y., Tong, X., 2018. Adaptive O-CNN: A patch-based deep
representation of 3D shapes. ACM Trans. Graph. 37 (6), 1-11.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2015. 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1912-1920.

Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J., 2016. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. Adv. Neural
Inf. Process. Syst. 29.

Yi, L., Kim, V.G., Ceylan, D., Shen, L.-C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A.,
Guibas, L., 2016. A scalable active framework for region annotation in 3d shape
collections. ACM Trans. Graph. (ToG) 35 (6), 1-12.

Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122.

Zhi, S., Liu, Y., Li, X., Guo, Y., 2018. Toward real-time 3D object recognition: A
lightweight volumetric cnn framework using multitask learning. Comput. Graph.
71, 199-207.

http://refhub.elsevier.com/S1077-3142(22)00133-3/sb14
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb14
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb14
http://dx.doi.org/10.1109/3DV50981.2020.00051
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb16
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb16
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb16
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb16
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb16
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb17
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb17
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb17
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb17
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb17
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb18
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb18
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb18
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb18
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb18
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.5281/zenodo.1299387
http://dx.doi.org/10.5281/zenodo.1299387
http://dx.doi.org/10.5281/zenodo.1299387
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb24
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb24
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb24
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb26
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb26
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb26
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb26
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb26
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb27
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb27
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb27
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb27
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb27
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb29
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb29
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb29
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb30
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb30
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb30
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb31
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb31
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb31
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb33
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb33
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb33
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb34
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb34
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb34
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb34
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb34
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb35
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb35
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb35
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb36
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb36
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb36
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb38
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb38
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb38
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb38
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb38
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb39
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb39
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb39
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb39
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb39
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb41
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb41
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb41
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb41
http://refhub.elsevier.com/S1077-3142(22)00133-3/sb41

	RocNet: Recursive octree network for efficient 3D processing
	Introduction
	Related work
	Recursive octree networks
	Octree representation
	Recursive octree encoder
	Recursive octree decoder
	Node classifier
	Loss function
	Complexity analysis

	Experiments and comparisons
	Experiments setup
	3D shape classification
	3D shape reconstruction
	3D shape generation
	3D shape segmentation

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

