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Abstract

Autonomous 3D environment exploration is a fundamental task for various applications such as navigation and object search-
ing. The goal of exploration is to investigate a new environment and build a map efficiently. In this paper, we propose a
new method which grants an agent two intertwined options of behaviors: “look-around” and “frontier navigation.” This is
implemented by an option-critic architecture and trained by reinforcement learning algorithms. In each time step, an agent
produces an option and a corresponding action according to the policy. We also take advantage of macro-actions by incor-
porating classic path-planning techniques to increase training efficiency. We demonstrate the effectiveness of the proposed
method on two publicly available 3D environment datasets, and the results show our method achieves higher coverage than
competing techniques with better efficiency. We also show that our method can be transferred and applied on a rover robot in

real-world environments.

Keywords Exploration - Option-critic - Reinforcement

1 Introduction

When arobot is placed in a new environment, it is very impor-
tant that the surroundings are mapped as quickly as possible
in an unsupervised manner so that subsequent tasks can be
more easily completed. Specifically, an optimal policy should
be able to give a sequence of actions that maximizes the
coverage of an environment given a limited time or energy
budget. This process is called autonomous exploration, and
it has been studied for many years.

Traditional methods include frontier-based exploration
[21] where agents consistently chase after frontiers until
the whole scene is visited. Most existing learning-based
work tackles this problem either by active SLAM (simul-
taneous localization and mapping) or reinforcement learning
(RL). Traditional methods consider the problem as a partially
observable Markov decision process (POMDP) [19], while
reinforcement learning algorithms, which have attracted
more attention in recent years, employ various kinds of
rewards such as curiosity, coverage or novelty [13] to encour-
age the exploration of unknown places (Fig. 1).
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Compared to traditional visual-SLAM methods, learning-
based methods are able to leverage the structural regularities
of environments with semantic features. However, one main
drawback of reinforcement learning-based exploration is the
inefficient use of training data and extremely long training
times. This is partly because the action set of an agent is too
low level to train by a limited number of training episodes
in an end-to-end manner, though theoretically feasible. One
solution is imitation learning [4], but expert demonstration
is usually hard to obtain and hard to interpret. Recently, [3]
proposed to use high-level macro-actions (a series of atomic
actions) instead by incorporating classic path-planning tech-
niques. By doing so, the agent is only trained to select optimal
“goal points” rather than atomic actions, which significantly
improves training efficiency. However, our insight is that nav-
igating to a new goal point will come across a frontier point
as shown in Fig. 2. Therefore we propose to produce frontier
points instead of arbitrary points for the following reasons:
(1) a frontier goal is a sub-goal of an arbitrary point and
hence is quicker to navigation to; (2) a frontier point can be
reached using path-planning since it is within the explored
regions where the occupancy map is already constructed.

In this paper, we propose an autonomous exploration algo-
rithm which integrates two exploration options implemented
using the option-critic architecture: navigating to a selected
frontier point; and investigating the local environment. An
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Fig. 1 Algorithm overview. Our method takes as inputs the RGB-D
frames and the maintained maps. The feature vectors of them are con-
catenated and fed into the policy network. The policy chooses an option

Frontier Arb’i;c(rary point

------- 5

Fig. 2 Frontiers and arbitrary points. Our policy network produces
frontier point instead of arbitrary points. Our insight is navigating to
a new arbitrary point will come across at least one frontier point if new
regions are discovered. Explored region is marked as blue and rest as
white (color figure online)

overview of our method is shown in Fig. 1, and we make the
following contributions:

e We show, for the first time, exploration in large spaces
using RL across high-level task options that are inter-
leaved in real time;

e We combine the classic frontier-based method with RL
and its effectiveness is well studied;

e We extend the state of the art for exploratory navigation
on the Gibson and Matterport3D datasets; and

e We show that our method produces not only quantita-
tively more efficient, but also qualitatively more compact
exploration trajectories.
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from “Frontier” and “look-around” according to the estimated values.
An action is also produced by the chosen option. To navigate to a fron-
tier, path-planning techniques are employed

2 Related work

[21] proposed a frontier-based exploration method that
always navigates to the closest frontier point and then always
performs a rotation inspection. Subsequently, new frontiers
are produced and the process repeats and eventually the
whole scene is explored. There is, however, no learning
involved.

Recently there have been multiple attempts to solve the
autonomous exploration problem by learning. The moti-
vation is that an agent is able to act more efficiently by
leveraging the structural regularity and semantics of the
scene. Another benefit is by using learning techniques more
freedom of sensory modalities is achieved. For instance,
depth information can be inferred by neural networks if only
an RGB camera is available. The first end-to-end method to
output atomic actions from sensory observations is [4]. Their
policy network takes as inputs an RGB-D frame and the cur-
rent occupancy map and outputs an action which the agent
executes. The reward is designed as the incremental coverage
of the occupancy map. This simple method requires imitation
learning to initialize the weights of the network. In addition
to the spatial memory, the method also integrates a temporal
memory by employing GRUs (gated recurrent units). How-
ever, it is still not clear that the method without imitation
learning outperforms the classical frontier method [21].

While coverage is a common metric, there are also alter-
native ways of defining rewards: [11] encourages the agent
to visit states that are not predicted confidently, which is also
called a curiosity-driven strategy. [ 18] uses the inverse of the
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square root of visitation number as the reward, encouraging
the agent to move to under-explored areas. We point readers
to [13] for a detailed taxonomy and explanation of existing
exploration paradigms.

As a major improvement, [3] leverages a hierarchical
structure and classic path-planning techniques to train a pol-
icy more efficiently. Instead of using atomic actions, its policy
outputs locations where the agent is supposed to navigate
to. Compared to atomic actions, temporal abstracted actions
need fewer training episodes and do not require imitation
learning. Instead of an actual occupancy map, [12] uses an
anticipated occupancy map. With training, the anticipated
map becomes more and more accurate. This allows the policy
access to a complete (albeit approximate) map at a relatively
early stage.

All the aforementioned learning methods have only one
option which involves navigating to a certain point. Our
method combines the frontier method and the line of work
which takes advantage of a temporally abstracted policy.
However, we employ the option-critic architecture [1, 17]
which grants our policy two different options, that is, two
options of behaviors, giving the agent more flexibility and
efficiency. This surprisingly simple addition of a “look-
around" option, improves the performance of the agent
significantly.

3 Methods
3.1 Problem definition

The goal of autonomous exploration is to establish a 2D occu-
pancy map of an environment as quickly as possible. Given a
set of actions .A that an agent can perform, e.g., rotate, move
forward, the algorithm should be able to find an optimal tra-
jectory of actions t = {aj, az,...,ar | a; € A} such that
for a given time step T, the highest coverage rate of the envi-
ronment is reached. We solve this problem by estimating a
policy, 7, trained by RL.

We consider a mobile agent equipped with an RGB-D
camera. For simplicity, we also assume the agent has an
IMU module which records the current location relative to
the initial position. For a robot without such functionality,
some off-the-shelf classic SLAM algorithms [7, 9] or neural
network-based estimation [3] can be applied instead. At each
time step ¢, the policy 7 takes as input the current state, s;
which comprises: an RGB frame; and occupancy maps, the
format of which will be discussed in detail in the following.
The output of the policy is an action a; € A that maximizes
the coverage.

3.2 Overview

It has recently been found that using higher-level macro-
actions significantly improves the training efficiency without
involving imitation learning which usually requires many
expert demonstrations [3]. Similar to this approach, we adopt
classic path-planning techniques [16] for navigation, which
saves the agent from learning straightforward navigation
tasks. Specifically, instead of outputting an atomic action,
our policy 7 estimates a goal point to which the agent will
navigate. Different to ANS [3] that uses arbitrary points, we
incorporate the concept of “frontiers” which have been shown
as a very effective strategy for exploration [21].

Furthermore, instead of simply performing navigation, we
add a complementary option “look-around investigation”.
Our insight is a “look-around” operation is sometimes more
efficient than wandering around. Imagine when you are in a
new environment, the first step you would take is very likely
to look around rather than immediately moving to a new
location.

3.3 Map formats

It has been demonstrated that complex map-based archi-
tectures significantly improve the performance of explo-
ration [6, 12]. Furthermore, an explicit map facilitates classic
path-planning techniques. We also take advantage of such
maps to help memorize the occupancy of environments and
trajectory of an agent. Specifically, we use 5 maps to record
this information. All of these maps have a dimension of
512 x 512 and are concatenated as a 5-channel input consist-
ing of: occupancy map, explored map, trajectory map, current
location map, frontier map. The occupancy map records
obstacles. Since our agent has a depth camera, we are able
to observe a point cloud and align it with the agent’s current
location in real time. Therefore we can build an occupancy
map on the fly. Itisa 512 x 512 binary map indicating whether
a certain location is free or an obstacle. The explored map
indicates which areas have been observed, and which are
unexplored, while the current location and the past trajec-
tory of the agent are stored in the current location map and
trajectory map separately.

We also maintain a frontier map in real time. The fron-
tiers are defined as the boundaries between the explored and
unexplored areas except for the obstacles (e.g., walls). The
computation of this map is very fast since it only involves
logical bit-wise operations on the explored and occupancy
maps.

For the feature extractor, we use seven 2D convolutional
layers with kernel size of 3 and stride of 2 followed by two
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fully connected layers activated by ReLU. In addition to the
maps, the RGB frames are also processed by ResNet18 [5]
and concatenated with the map feature.

3.4 Training policy

As previously mentioned, our policy has two options:

1. Navigation to a selected frontier, and
2. look around at the current location.

We denote these as w; and w;, respectively. At each time step
t the policy 7 outputs an option w; as well as the action a;
based on its individual policy 7, .

There are three main components in our policy networks
parameterized by 6, n: the option-value function V (s, w),
intra-option policies 7, ¢ and termination functions B, ;.
The option-value function V (s;, w;) predicts the discounted
returns of choosing option w; € {w;, wa2} given the current
state s;. The intra-option policies 7, ¢ estimate the action
distribution in the context of a state and an option. The
termination functions B, , € (0, 1) give probabilities of ter-
minating the current option. Moreover, there is a policy over
options g which selects an option each time the current
option is terminated. However we simply use a greedy pol-
icy for mg, which always picks the option with the largest
estimated value:

TQ(s:) = argMaX e () oy} V (81, @). (1)

In the following we will present the gradients of the intra-
option policies 7, ¢ and termination functions B, , with
respect to parameters 6 and 1. Given an option w and state s,
the gradient of an action is similar to that of Advantage-Actor
Critic (A2C) [8]:

e

3 M0.0(@ 1) 4, @)
70

acA,

where A(s, w, a) is the “advantage” of an action over the
averaged rewards:

As,w,a) =r +yV(s',0)— V(s, ), 3)

s’ is the next observation and y is the discount factor. We use
y = 0.99 across all our experiments.

Different to [1], we do not assume the same action space
for both options since a navigation target is a location (x, y),
while look-around only needs an angle «. Therefore we use
A, to denote the action space of option w.
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Algorithm 1 Exploration with options

1: Choose the initial option w( according to g (so).

2: w < wo, S < 50

3:fori=1,..., MaxSteps do

4 Evaluation stage:

5 Generate a macro-action a ~ 1, ¢ (s)

6:  if w is “Frontier-navigation” then

7 Navigate to a in Environment using Path Planning and obtain
s’ r

8:  else

9: Rotate by an angle a in Environment and obtain s’, r
10:  endif

11: s <5

12:  Calculate g1, B2 and V (s, w1), V (s, w2).
13:  if Bernoulli(8,,,,) then

14: Update w <« mq(s)

15:  endif

16:  Training stage:

17: 0 < 78103”“’9(’1“)A(s, w,a)

90

18: .

19: 5« LoD (v (s, ) — max, Vs o)
20:  Update 6 and n based on Eq5.

21: end for

nv

Fig.3 Model diagram. After a macro-action is executed, values V and
terminations B are computed. The next option is decided accordingly

n is updated as follows:

> aﬂ%’—zm(ws,w) — max V (s, ), @

welwr,m}

where V (s, w) — max, V (s, @) acts in a similar way to
advantage, which increases the termination probability of an
option when its estimated value is suboptimal.

Finally, we update the value function parameters accord-
ing to the TD-target:

r+y(1 =BV (' @) + pmax V(s, o). &)

Our proposed approach is summarized in Algorithm 1, and
its architecture is shown in Fig. 3. The method is divided into
training and evaluation stages. During training, we employ
a memory buffer which stores 20 different trajectories. The
policy is then trained by these accumulated trajectories.
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A description of the training process is as follows: The
agent generates an RGB-D frame and a location signal at each
time step. Our algorithm takes as inputs the RGB-D frame
and the location signal and outputs a macro-action, that is,
“look-around” or “point-navigation” using the intra-option
policy w . After performing the action, the occupancy map
is updated according to the observations. The increment of
the map is then used as the reward signal to train the network
parameters 6 and 1 by using Egs. 2 and 4, separately.

3.5 Action space

We use different action spaces for the two options. For the
“Frontier-navigation” option the action space is 2D points
(x,y) € (0,1) x (0, 1). The produced point is then scaled
to the dimensions of our map (512 in all our experiments).
The frontier which is closest to the point will be selected as
target.

For the “look-around” option, its action space is simply
areal number o € (—1, 1). The number is then re-scaled to
(—m, ) which indicates the rotation angle.

Because there are two different action spaces for w; and
w2, we use two separate models for each of the policies.
However, the two policy networks are jointly trained with
and ultimately controlled by the intra-option policy mg.

3.6 Rewards

Similar to [3, 4], we adopt the increase of coverage during
exploration as rewards. This reward indicates how much new
knowledge an action gains from the environment, and is also
indicative of how efficient an action is. The new explored
area can either be free space or obstacles. We use the ratio of
increment to the total area of a scene instead of the absolute
area considering that different scenes might have different
scales.

4 Experiments
4.1 Experimental setup

We evaluate our proposed method in Habitat-Lab, a modular
high-level library for end-to-end development in embodied
Al [14] on two publicly available datasets: Gibson [20] and
Matterport3D [2]. Both the datasets consist of 3D recon-
structions of real-world indoor environments such as offices
and homes. The average area of scenes in Matterport3D is
larger than Gibson. For both datasets, there are training/test
splits available. We use the val split for testing Gibson and
the fest set for Matterport3D. For each training/test scene
(an episode), we use a maximum number of 1000 steps. All
tasks required fewer than 1000 steps for the optimal solution.

Setting the terminal time to 1000 steps was done to give algo-
rithms a good chance of completing the task while trading off
the time to complete the computational experiments. During
our experiments we found that after 1000 steps all algorithms
had either converged or were close to convergence. Further-
more, in practice, one must set either a maximum time or step
budget, or a minimum coverage goal for a robot to achieve,
and we have decided that a maximum time budget is more
pertinent for real-world scenarios.

There are 14 test scenes in total which are not seen during
training. Each scene has 71 different 2D rotations and initial
locations of the agent for Gibson. In Matterport3D, there are
18 test scenes in this dataset in total and each one has 51
different rotations. The scenes in this dataset are generally
much larger than the ones in Gibson and their layouts are
more complicated, which makes exploration more difficult
given the same number of time steps.

Although we make assumptions about the input modali-
ties, we note that our method is not limited to a robot with
such a configuration. The flexibility of input modalities can
be achieved by adopting neural network-based approxima-
tors. However, since this is not the main focus of the paper,
we simply use the ground-truth data of the simulator. For
each time step, the agent observes an RGB-D frame of size
256 x 256 and its location. The aforementioned maps are
maintained and updated in real time using this information.

Our algorithm is implemented in PyTorch [10]. All exper-
iments were done on a PC with Intel Core i7-6700K CPU
(4.00GHz) and an NVIDIA Quadro P6000 GPU (24GB
memory).

4.2 Baselines

We use 3 alternative baselines for evaluation and compar-
isons. All of the baselines as well as our method are trained
with the same 750 episodes (except for the frontier method
which does not need training) and tested on the same split. It
is worth noting that the test scenes are not seen during training
and we do not train the policy during testing. To speed up the
training process, we use 8 simulators to collect trajectories
in parallel. Since we employ the A2C [8] algorithm, every
simulator is synchronized when executing actions. For each
training/evaluation episode, we consistently use 1k atomic
action steps across all methods but a different number of
macro-actions due to the scene scale. We use 25 steps for
the macro-actions for Gibson (hence 40 macro-actions per
episode) and 50 steps (20 macro-actions per episode) for
Matterport3D dataset because its scenes are much larger than
those in Gibson. Each macro-action includes a series of 25/50
atomic actions such as move forward, rotate left/right. The
policy is updated by the collected trajectories after every 20
macro-actions are executed using proximal policy optimiza-
tion [15].
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Frontier method This is the classic method for exploration
without any learning being involved [21]. The main idea is to
chase after the closest frontiers until the whole environment is
explored. The simple policy performs well and is guaranteed
to converge given sufficient time.

Atomic action method The simplest attempt to engage RL
to the problem is just maximizing the coverage given a set
of atomic actions (turn left, turn right, move forward) such
as [4]. To make the comparison straightforward, we do not
employ imitation learning as done in [4]. Furthermore, we
assume the agent is provided with the ground-truth locations.

Arbitrary point method Instead of navigating to frontier
points, [3] proposed to navigate to arbitrary points on a map.
Similarly, we also simplify its original implementation for
the straightforwardness of comparison: we do not include
SLAM and local policy components. Please note that these
modifications should not worsen its performance for the fol-
lowing reasons: the visual SLAM component predicts the
odometry by taking ground-truth locations as training sam-
ples. Therefore directly using imu output should not lead
to deterioration; The local policy is trained to imitate the
path-planning algorithm. Similarly, using the path-planning
output directly should not worsen its performance. We make
these two modifications for a simplicity of comparison.

The major difference between our proposed method and
the alternatives is our method has two options (navigation
and look-around), while the others only have one.

4.3 Metrics

We use two metrics for evaluating the performance of all
methods: coverage percentage with time steps and coverage
percentage with trajectory length. The difference between
them is that trajectory length only considers the number of
“move forward” actions, while time steps take all of the three
actions into consideration. The length provides an effective
way of measuring the neatness and efficiency of a trajectory.
The evaluation of this metric is shown in Table 2. For a robot

Large

equipped with a rotatable camera, rotating its arm usually
costs less energy than moving forward.

4.4 Results and comparisons

The results for Gibson and Matterport3D datasets are shown
in Figs. 4 and 5, respectively. For each dataset, we show the
overall, large scenes, and small scenes separately. Overall,
our method achieves the best performance in both metrics
and datasets. After a total number of 1000 time steps, our
method achieves a coverage of 95% across all test scenes
of Gibson on average, followed by 92% for the arbitrary
point method, 88% for the frontier method. The atomic action
method achieves the lowest coverage rate of 75%. The rank-
ing of the methods for Matterport3D closely agrees with that
of Gibson.

Table 1 collects the coverage rates of the four aforemen-
tioned approaches after 500 and 1000 time steps in the two
datasets, respectively. It can be seen that for the same method
and number of steps, the coverage of Matterport3D is lower
than that of Gibson by approximately 20%-30%. When con-
sidering the coverage with trajectory length (Table 2), our
method is much better than other methods, especially in Gib-
son dataset.

The results suggest that temporally abstracted macro-
actions are generally more effective than atomic actions.
This is due to the fact that classic path planning is employed
to obtain optimal paths, while learning this usually requires
much more training. By using high-level behaviors the pol-
icy focuses on goals with higher abstraction level. We note
that the frontier-based method achieves decent coverage
without learning. Especially at the beginning stage, it even
outperforms the arbitrary point method. However, with the
exploration progressing, the learning-based method is able
to explore more areas as it learns the regularities from the
past trajectories and observations.

We observe that the trajectories produced by our method
appear more organized and cleaner than that of the fron-

Small
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02 —Arbitrary 02
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ol ol
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Fig.4 Evaluation on Gibson. Plots show the averaged coverage as the episodes progress. Left: all scenes. Middle: large scenes. Right: small scenes
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Fig.5 Evaluation on Matterport3D. Plots show the averaged coverage as the episodes progress. Left: all scenes. Middle: large scenes. Right: small

scenes

Table 1 Coverage after 500 and 1000 steps on Gibson and Matter-
port3D datasets (1)

Methods Gib500 Giblk Mat500 Matlk
Full 0.90 0.95 0.59 0.72
Frontier 0.84 0.88 0.48 0.65
Arbitrary 0.82 0.92 0.48 0.62
Atomic 0.68 0.75 0.24 0.27

The symbol bold indicates the best results

Table 2 Average coverage incremental percentage per unit trajectory
length on Gibson and Matterport3D datasets (1). “A” for averaged. “L”
for large scenes and ““S” for small scenes

Methods Gib/A  Gib/L  Gib/S Mat/A Mat/.  Mat/S
Full 0.47 0.30 0.69 0.14 0.11 0.19
Frontier 0.21 0.18 0.22 0.13 0.10 0.19
Arbitrary  0.12 0.12 0.12 0.09 0.09 0.11
Atomic 0.13 0.10 0.15 0.13 0.09 0.19

The symbol bold indicates the best results

tier method. This is the consequence of the option switching
and planned frontier goals. For circumstances where a look-
around action is more efficient than navigating to a point, the
option-critic architecture enables switching between multi-
ple options, leading to a shorter trajectory length.

We show the exploration trajectories in Fig. 13. This visu-
ally validates the neatness of the trajectories of our method.
Our method is advantageous as it uses fewer move forward
actions which are replaced by rotation wherever possible.

4.5 Ablations
4.5.1 Effectiveness of both components

As previously mentioned, we proposed two key improve-
ments in our method: adding a frontier constraint when
choosing the target point; adding a look-around option. To
validate our method benefits from both improvements, we

Table 3 Ablation study variants

w/ frontier w/o frontier

w/o F
w/o FR

w/ look-around full

w/0 look-around w/o R

did an ablation study in which we remove one component at
a time, which leads to four variants: full method, full method
without frontier component (arbitrary point + look-around),
full method without look-around option (arbitrary point +
frontier), and the method without both components (the arbi-
trary point method). They are summarized in Table 3. Their
corresponding performance can be seen in Fig. 6.

To examine the performance under different scene scales,
we also report the small, large splits in addition to the overall
results. The overall performance of the four variants suggests
that both components help since the method without both
components has the worst performance. Adding a frontier
constraint for the target point is more advantageous in smaller
scenes than large ones. This coincides with the fact that the
frontier-based method performs better in smaller scenes than
arbitrary point method as we consistently observed in Figs. 4
and 5. The look-around component is beneficial in both small
and large scenes and is more important than the frontier com-
ponent (w/o F outperforms w/o R by approximately 10% after
1k steps).

Therefore we draw the following conclusions for the abla-
tion study: (1) both components help; (2) frontier constraint
is more beneficial to smaller scenes; (3) look-around com-
ponent contributes more (Fig. 7).

It can also be observed from Fig. 13 that the trajectories of
the method without look-around option are generally more
messy and the coverage is less after the same number of time
steps. We show the selections and distribution of options from
10 distinct trajectories in Fig. 8. Generally speaking, the nav-
igation option is selected more frequently than look-around.
A common pattern of behavior that we observe across differ-
ent scenes is that the agent starts exploring by first looking
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All Large Small
0.8 0.8 0.8
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04
0.4 —Full 04
—w/oF 02
02 —w/o R 0.2 0
—w/o FR
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800

Fig. 6 Ablation study on MP3D. Full: full method. w/o F: full method without frontier component (arbitrary point + look-around). w/o R: full
method without look-around option (arbitrary point + frontier). w/o FR: the method without both components (the arbitrary point method)

All Large Small
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
04 —Ful 04 04
— perg
0.2 ———once 0.2 0.2
———random0.3
0 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Fig.7 Look-around option validation on MP3D. per2: perform a look-around after each navigation step. once: perform a look-around once at the

initial stage. random0.3: perform a look-around by a probability of 0.3

0 200 400 600 800 1000 -0.5 0 05 1 15

Fig.8 Option selection and histogram. Left: 10 option selections in 10
trajectories. The x-axis shows the time steps and the y-axis has a row for
each trajectory. Navigation is shown as purple and Look-around yellow.
Right: frequency of options. Navigation is 0, look-around is 1

around. Then there is a period mostly dominated by navi-
gating to a frontier point. Then, when most of the scene is
explored, the agent tends to choose look-around more often
as shown in left of Fig. 8.

4.5.2 Look-around validation

In the previous section, we showed that the look-around
option implemented by the option-critic architecture is ben-
eficial to the exploration task. To verify that an “intelligent”
look-around is necessary, we tested several naive look-
around baselines in the experiments: (1) a look-around is
performed after each navigation step; (2) perform a look-
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Fig. 9 Domain generalization performance. We evaluate the perfor-
mance on Gibson with the model trained on Matterport3D. Solid and
dotted lines indicate the corresponding original and domain-transferred
performance, respectively

around once at the initial stage; (3) perform a look-around
randomly by a probability of 0.3. The results can be seen
in Fig.7. Overall, our learned look-around outperforms the
baselines by approximately 10%. It can be observed that the
“look-around after each navigation step” has the worst perfor-
mance since it wastes time examining already well-explored
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Fig. 12 Real-world transfer performance in 3 scenes. x-axis represents

Fig. 10 Rover robot used in real-world transfer. The policy model is
trained on simulator and deployed on the real robot. It is equipped with
an IMU as well as an RGB-D module

4.6 Domain generalization

surroundings, while our learned policy intelligently chooses
to look around in more appropriate situations.

the number of steps, while the y-axis represents the explored area in m

2

We also evaluate the generalization ability of the above meth-

ods. In this experiment, every method is tested on Gibson
dataset with the model trained on Matterport3D. The purpose
is to test if a method can generalize well from one domain to

Fig. 11 Real-world transfer. Figure showing the progress of agent exploring two different scenes. For each scene we show the RGB frames and

the constructed maps at the initial stage, 30%, 60% and 100% of each corresponding number of time steps

@ Springer
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Fig. 13 Trajectories of different methods after 1000 time steps. From
left to right columns: our approach, look-around option disabled, fron-
tier method, arbitrary point method and atomic action method. Each
row represents a selected scene. Green areas represent obstacles, while
light blue represents free space. Red lines indicated the trajectories of
agent. Orange dots are the frontiers. Unexplored areas are in gray. We

another. Since the frontier method does not involve learning,
it should remain the same as in previous experiments. The
results can be seen in Fig. 9 which shows the coverage with
time steps of the three aforementioned methods. We observe
aperformance drop for all methods. Our method and arbitrary
point method have a comparable drop rate, while the atomic
action method deteriorates significantly. This suggests RL
methods with more abstract actions are more robust to envi-
ronment change and hence better transfer ability.

@ Springer

can observe from the figure that our proposed method covers most area
compared to alternatives after 1k steps. Besides, the trajectories of the
agents trained by our method are more compact. This means the move-
ments are more efficient and hence less energy consumption (color
figure online)

4.7 Real-world transfer

To evaluate how well the trained model transfers in a real-
world environment, we deploy our proposed algorithm on a
rover robot equipped with an Intel RealSense RGB-D camera
D435 and a tracking camera T265 as shown in Fig. 10. We
discretize the action space of the motors so that the 3 atomic
actions used in the simulator can be applied.

We test our method on three real environments: a large
office, a small office and a kitchen. Since they have different
scales (120m2, 15m?, 60m?> approximately), we use differ-
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ent total numbers of steps for each individual scene (1000,
100 and 500 steps). The RGB frames and the constructed
maps of two environments at the initial stage, 30%, 60% and
100% of each corresponding number of time steps, are shown
in Fig. 11. A demonstration video showing this process can
be found in supplementary materials. We observe very sim-
ilar behavior patterns as we see in the simulator: the agent
always performs a look-around at the initial stage; after most
spaces are explored the agent tends to select look-around
option more frequently. After certain number of steps, most
space is explored and the corresponding occupancy maps are
constructed.

Thumbnail pictures of the three scenes and their cor-
responding coverage with time steps curves are shown in
Fig. 12. The curves agree with the ones we tested in simu-
lator, which suggests our method is effectively transferred
to a robot in real-world environments. One advantage of
using abstract high-level actions is that it is able to accom-
modate different implementation details of atomic actions.
For instance, the “turn-left” may have a different rotation
angle compared to the one in simulator; however, it does not
have an influence on the policy network. Note that real robots
might have different sizes and shapes; therefore, we need to
set obstacle boundaries accordingly so that robots can move
and rotate freely without stalling (Fig. 13).

5 Conclusion

In this paper, we proposed a method that integrates two
options for autonomous exploration. One option is navigating
to a selected frontier using classic path-planning techniques.
The other complementary option is looking around the sur-
roundings by a certain angle. We validated its effectiveness
on two publicly available datasets and real-world environ-
ments. The results outperform the three baselines we tested.
We also validated that the method benefits from both options
by an ablation study.

To conclude, we have the following findings in our
research: it is more effective and efficient to have multi-
ple options for exploration. Note that our method is able to
integrate any number of options even though we only used
two in our implementation. Classic frontier-based method
is more advantageous in the early stage. Employing path-
planning techniques requires fewer episodes, making training
more efficient. Temporally abstracted actions are generally
more effective than atomic actions. All of these are consistent
across all our experiments.

Future work includes integrating more options and explor-
ing how these options can cooperate and what is the minimum
set of options that achieves the best performance. Another
further direction is a policy outputting a higher hierarchi-
cal abstracted action such as a whole planned trajectory. We

expect this to take longer-term planning into consideration
which makes the trajectory even shorter and hence more
action-efficient.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00138-023-01492-
1.
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