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Abstract Object pose estimation by manifold learning has become a hot research area
recently. In this paper, we propose an efficient method that can recover pose and viewpoints
for numerous hand gestures from monocular videos based on Locality Preserving Pro-
jections. We first select some hand dynamic gestures as primitive hand motions and set a
3D-2D mapping table to relate 3D joint angles of sampling static pose with their projective
silhouettes from arbitrary viewpoints. Then the embedding space and explicit mapping
function are learnt for every primitive motion. In order to make classification and prediction
among those embedding spaces, a Subspace Filtering Algorithm is also proposed which can
recognize and recover numerous hand dynamic gestures by the combination of primitive
gestures. At last, by using skin color cues and oriented k-Dops, multi-hands can be labeled
and tracked separately and accurately. Extensive experimental results demonstrate qualita-
tively and quantitatively that 3D pose recovery of hands can be achieved by our method
robustly and efficiently.
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1 Introduction

Gesture which is vivid, imaginable, directly and contains a wealth of information is an
important medium for interpersonal communication. And gesture-based interaction also
has become a hot research topic in the field of human-computer interface. By using
indicative gestures, we can control the computer systems at distance, let intelligent
robot to understand and communicate with us and by the 3D reconstruction of hand
gestures, and accomplish various operations on the virtual objects in virtual reality or
augmented reality system [17, 33]. Gesture is very promising in practical applications.
However, because of the diversity, complexity, ambiguity, self-occlusion and high
degree of freedom, as well as the appearance variations in time, space and individuals,
the real-time estimation of human gestures is still a challenging multi-disciplinary
problem. Especially, hand gesture estimation based on monocular camera is even more
difficult, because of depth ambiguities. In the past few years, although hardware
devices (e.g., Kinect) that combined with infrared sensors, are capable of adding depth
information to 2D images and the cost of such type of equipments is slowly decreasing,
it is still worth searching for alternative solutions that implemented with simple video
cameras [27], which are widely used in personal computers, laptops and mobile phones
and can cut the budget required for the deployment of multiple entertainment systems,
so scholars from all walks of life still put their efforts to accomplish this task.

A variety of methods have been proposed during the past few years, which can be
categorized into motion recognition methods and shape reconstruction methods [11, 13,
24]. For motion recognition, special recognizers have been constructed to keep track of
temporal modeling like Hidden Markov Model (HMM) [10, 36], Neural Network (NN)
[18, 22], rule based and finite state machine and so on [2, 19, 31]. For shape
reconstruction, methods further can be categorized into model-based or appearance-
based methods. Model-based approaches are performed by formulating an optimization
problem whose objective function measures the discrepancy between the visual cues
that are expected due to a model hypothesis and the actual ones. The employed
optimization method must be able to evaluate the objective function at arbitrary points
in the multidimensional model parameters space. Model-based approaches provide a
continuum of solutions but are computationally costly and depend on the availability of
a wealth of visual information. Appearance based models is also referred as 2D models
or view based models [26, 28, 29, 32], which typically estimate hand configuration
from images by learning a mapping from the image feature space to hand configuration
space. The mapping is usually highly nonlinear due to the variation of hand appear-
ances under different viewpoints. So their recognition abilities confined in the training
set of the known hand configuration and the accuracy of collecting. The appearance
based methods are usually very fast, and can be employed in monocular camera system.

In recent years, computer vision research has witnessed a growing interest in
subspace analysis and manifold learning techniques [39]. Given a set of high-
dimensional data points, manifold learning techniques aim at discovering the geometric
properties of the data space, such as its Euclidean embedding, intrinsic dimensionality,
connected components, homology and etc. Manifold learning techniques can be classi-
fied into linear (LDA [5], PCA [23], MDS [25]) and non-linear(ISOMap [34], LLE
[30], LE [6], etc.) techniques, which have been applied to face, gait recognition with
impressive results. Despite the high dimensionality of the configuration space, many
human motion activities lie intrinsically on low dimensional manifolds. Intuitively, the
gait or gesture is a 1-dimensional manifold embedded in a high dimensional visual
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space [1, 39], if we consider the body kinematics as well as the observed motion
through image sequences.

In this paper, we are especially interested in using manifold learning techniques to
establish a low-dimensional structure to organize the visual training data of dynamic
gestures from multi-viewpoints. At the same time, we try to learn an explicit mapping from
feature space to subspace to recover intrinsic 3D hand configurations and viewpoints for
numerous hand gestures from monocular image sequences. To be specific:

(1) Some hand dynamic gestures are selected as primitive training gestures. And sample
the static pose of these gestures at certain steps. A 3D-2D mapping table is then set to
relate 3D joint angle data of every pose with their projective silhouettes from arbitrary
viewpoints.

(2) Subspaces for primitive training gestures from arbitrary viewpoints are learned by
Locality Preserving Projections (LPP) [7, 14, 15]. Each pose in the feature space could
be explicitly mapped to the low-dimensional embedding space which preserves local
structure and has discriminating power to make classification.

(3) A Subspace Filtering Algorithm (SFA) is proposed, which can recognize and recover
numerous hand dynamic gestures from the combinations of primitive training gestures.
SFA mainly converts the multiple-motion recognition and reconstruction problems to
classification and prediction process among embedding spaces.

(4) A multiple-hand estimation and tracking framework is also proposed. By com-
bining skin color cues and oriented k-Dops(Discrete Orientation Polytopes) [38],
several hands can be labeled and tracked separately and accurately. With the
SFA, the estimation of configurations and viewpoints can be achieved robustly in
real-time.

2 LPP based techniques

LPP (Locality Preserving Projections), a linear dimensionality reduction algorithm, is
obtained by finding the optimal linear approximations to the Eigen-functions of the
Laplace Beltrami operator on the manifold. It seeks to preserve the intrinsic geometry
of the data and computes the explicitly the manifold structure of the feature space
[15]. Different from ISOMap and LLE defined on the training data, LPP is defined
everywhere and can be simply applied to any new data [14]. And LPP may be
conducted in the original space or in the reproducing kernel Hilbert space (RKHS)
into which data points are mapped. Besides, OLPP (The orthogonal locality preserving
projection) method produces orthogonal basis functions and can have more locality
preserving power [7, 37]. Take into account, the projective images of continuous hand
motion with different viewpoints are in one manifold (will be proven by experiments
in Section 6), we use the basic version of LPP. The following is a simple description,
for more details, please refers to the article [15].

Let the set of input instances be X = {xi ∈ Rd,i=1,…,N} and their corresponding points in
the embedding space be Y = {yi ∈ Re,i=1,…,N}, where d is the dimensionality of the feature
space and e is the dimensionality of the embedding space. The objective of LPP is to
minimize the function:

min
P

Xn
i; j¼1

������yi−y j������2Sij ð1Þ
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Where Sij is a similarity measurement (Sij = Sji) in adjacency graph of the input X set and
can be computed by Gaussian kernel:

Sij ¼ e−
xi−x jk k2

σ ð2Þ
Let

yT ¼ WTx ð3Þ
It expects each data point and its neighbors to lie on or close to a locally linear patch of the

manifold. By simple algebra formulation, the above objective formula (1) can be reduced as follows:

min
P

Xn
i; j¼1

������yi−y j������2Sij
¼

Xn
i; j¼1

WTxi−WTxj
� �2

Sij

¼ WTXLXTW

ð4Þ

The transformation vector W that minimizes the objective function is given by the
minimum eigenvalue solution to the generalized eigenvalue problem:

XLXTW ¼ lXDXTW ð5Þ
Where D is a diagonal matrix and its entries are column sums of S. L=D-S is the laplacian

matrix. Both matrices XLXT and XDXT are symmetric and positive semi-definite.
At last the explicit mapping is as follows:

x→y ¼ WTx ð6Þ

3 Training gesture database

According to the literature, there are a few public available gesture image databases.
Cambridge-Gesture database consists of 900 image sequences of nine gesture classes, which
are defined by 3 primitive hand shapes and 3 primitive motions [21]. The database published
by Athitsos and Sclaroff contains more than 107000 images, covering 26 hand gestures. But
this database only provides edges information [4]. The Massey Gesture Database includes
about 1500 images of different hand postures in different lighting conditions [9]. However,
none of the above contains both 3D joint angle data of every pose and their projective
silhouettes from arbitrary viewpoints and the primitive hand motions, so that we have to
build our training data base in the first.

In our work, a 24° of Freedom (DoF) kinematic model of the human hand proposed in [8]
is used to imitate realistic movements see Fig. 1. In order to get more accurate motion
simulation, angle constraints and dynamic constraints have been added to the 3D model.
Dynamic gestures or continuous motions could be simulated and discredited into a number
of poses by modifying angle parameters get from a data glove. And then in the test stage, the
other orientation parameters of the hands will be estimated by some geometric strategies.
The training data are generated using computer graphics by rendering from 29 viewpoints
roughly distributed on an eighth view sphere, see Figs. 1 and 2. Finally we make the training
images binary and scaled to the resolution of 64×64, getting a discrete training database
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which consists of 1000 samples for two grasping gestures form multi-viewpoints. Some
examples are shown in Fig. 3.

Meanwhile, a 2D-3D mapping table is built to connect 2D projective images with 3D pose
information. Specifically, in every row of 2D-3Dmapping table, themain key is the index of the
training image and attributes are joint angles and orientation of the pose. The original orienta-
tion for a pose is set to the first pose in row 2 of the Fig. 3, where hand tips point to the negative
direction of X axis. The orientation information of other poses is set to angle difference from the
original pose in three coordinate axes. And it only needs to keep one 2D-3D mapping table for
all the primitive gestures to save storage. Different from other manifold learning recognition
works like [1, 12], our training data does not include rotation of Z axis.

4 Detection, segmentation and tracking

Hand detection and segmentation are critical in visual image-based gesture recognition,
which directly influences the recognition accurate and rate. This section discusses a robust
and automatic preprocess to solve this task.

Fig. 1 Viewpoint sphere and 3d virtual hand

Fig. 2 A gesture from different angel of viewpoints
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In this paper, we assume that a person is sitting in front of a fixed camera with one or two
hands within the capture region. Set the normal axis of camera points to the operator Z-axis.
Camera is in the origin of the coordinate and axis X and Y are equal to image coordinate.

For every input video image, firstly make the image smooth, noise reduction and color
balanced. And then segment the skin area from background by Gaussian Mixture Model
(GMM) [20, 35] and make these images binary. On the second, calculate skin regions’
contour areas and remove those of small size, for they are probably the noise areas. Here
there may be some complex situations in the practical applications: face, exposed arms, the
intersection of hands and face or body parts, all these will become big interferences for hand
segmentation and gesture recognition. Many works ignore these situations or tackle these by
adding some constrains, such as the users must ware long-sleeved clothes. According to
observations in the environment we set up, the first most likely interference is that part of
user’s forearms moving into the capture region (see Fig. 4), so a Standardized Hand
Segmentation Algorithm (SHSA) is put forward to settle this issue. Subsequently an
ODop(Oriented k-Dops) based Multi-objects Tracking Algorithm (MOTA) is also proposed
to label and track the hand regions.

4.1 Standardized hand segmentation algorithm (SHSA)

Firstly, compute OBBs [39] for every hand skin area and them into four regions {Rl, Rml, Rmr,
Rr} evenly along the longest axis of its OBB (see Fig. 4) respectively. Find the minimum
span of skin region orthogonal to the longest spindle of the OBB in Rml and Rmr by hill-
climbing method. Then cut OBB into two parts OBBl and OBBr where the minimum span is.
Then OBBs are computed again for skin regions in OBBl and OBBr. The length of the longest
sideline of OBB is used as side to build a square image. In order to avoid the boundary error,
expand 15 % percent of black background outward and resize the area to 64*64 binary
images evenly. All these images will be put to SFA in section5 and only recognized hand
area will be taken as KBs and tracked afterwards. The SHSA algorithm only suit to the cases
that forearms are in the video without sleeves, for those with sleeves, SHSA is not always
valid. However, SHSA is a optional supplementary in some situations.

Fig. 3 Some training data of two primitive gestures

Fig. 4 Some examples for algorithm SHSA
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4.2 Multi-objects tracking algorithm (MOTA)

After detecting KBs and estimating gestures, it is need to track the identified KBs in the
following frames. However, in the real applications, there will probably be more than one
KB at the same time, or hands may undergo a rotation around X-Axis, Y-Axis or an arbitrary
angle with their BKs’ forms changing so much. So the tracking algorithm should have the
ability to handle all these cases. Inspired by the work [3], it’d better design a simple
geometry to replace KBs to mark the locations, to confirm identities, to have intersection
tests and so on, so we proposed a fast and accurate method to label and track multi-objects
by oriented k-Dop (ODop).

K-Dops (k Discrete Orientation Polytopes), or fixed-direction hulls as they are sometimes
called, made of k pairs of parallel hyperplanes in high dimensional space. Particularly, in
two-dimensional space, OBB is a 2-Dops, has its axes aligned to the two principal compo-
nent vectors of object. OBB is not the tightest, however, so we add other two pairs of parallel
lines to OBB, forming an orientated 4-Dops (ODop) for a BK. Compared with an orientated
ellipse used in [3], ODop is tighter and “large” enough to contain all pixels in a BK, while
the inner ellipse cannot include all the pixels in BK and the circumscribed ellipse is not tight
enough, so they are not accurate, especially in the case to distinguish closer BKs, see Fig. 5.
Besides, it is easy to determine a point’s position about an ODop (which is a convex
polygon) by the Ray Casting or Winding methods. So our improved algorithm for tracking
multiple objects operates in the following steps:

In the initial frame t=0, ODop is computed and labeled for every BKs from 1 to N by
pairs, and stored in a tracking object set TOS (see formula (7)).

TOS0 ¼ ODop01;BK
0
1

� �
; ODop02;BK

0
2

� �
;…; ODop0n;BK

0
n

� �g ð7Þ
Next is a cyclic process until the end of tracking.
In the frame t, BKs are segmented and their ODopst are computed at first. Then, in order

to track and label BKs, the relationships between ODopst and ODopst−1 are reviewed in the
following cases:

(a) If an ODopt only relates to one ODopt−1, then update TOSt by label {ODopt, BKt} the
same number as {ODopt−1, BKt−1}. That means an identified BK is tracked (see Fig. 6a).
Then compare the similarity between BKt−1 and BKt. If they only have the difference in the
direction Z-axis, then relate 3D information of BKt−1 to BKt without entering into the
recognition process in section5. Otherwise, get 64*64 test sample and put it into recognition
process.
(b) If an ODopt relates more than one ODopt−1, then label {ODopt, BKt} by number of the
ODopt−1 with which the intersection area is the largest (see Fig. 6b).

(a) An example for ellipsein paper [38].       (b) An example for ODops. 

Fig. 5 The comparison of the ellipses and ODops for two BKs. a An example for ellipse in paper [3]. b An
example for ODops
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(c) If an ODopt relates to no ODopt−1 or the related ODopt−1 has been labeled, then add this
pair {ODopt, BKt} to TOSt with a new number. That means a new target is found (see
Fig. 6c).
(d) If an ODopt−1 has no BKs which means its BKs has disappeared, so remove this ODopt−1

from TOSt.

As to case (c) and (d), it’d better delay the addition and remove operations when the test
results are the same after at least five frames to maintain the stability of the system.

5 Identification and estimation

5.1 Feature extraction

The key step of manifold learning algorithm is feature selection which determines whether
the mode of images and the relationship with other modes can be presented correctly. Instead
of taking all pixels as feature vector directly with consideration of making XDXT

nonsingular, noise reduction, we use Hu’s seven moment invariants [16] as feature vector
for BKs, noted by Fv. Fv is invariant under changes in translation, scale and rotation [23]. So
the influence of hand shape to the accurate of gesture estimation could be minimized. The
invariant quality in translation and scale are welcome for recognition, however, if the hand
only rotated around Z axis in XOY plane, the rotation invariant is not useful to figure out the
difference between BKs of the same pose. Especially in low-dimensional space, the samples
of the same pose with different Z angles will be clustered closely, or overlapped. Therefore,
in our method, AngleZ is calculated and stored in preprocess, and then combined with
recognition result to recover 3D configuration. By this way, a lot of samples and training
time have been saved for LPP.

5.2 Learning embedding spaces

Actually for a continuous motion (for instance, a hand’s grasping action), its 2D projective
images reside on a low-dimensional sub-manifold [34]. So by using nonlinear dimension-
ality reduction methods LPP, we can get a corresponding low-dimensional linear embedding

(a) (b) (c)

2

1

1
2
tODop

1
1
tODop

tODop1
tODop

tODop

1

tODop 3

2

1

1
2
tODop

1
1
tODop

tODop1

tODop 4

1
3

4

1

1

1
1
tODop

tODop1

1

1
2
tODop

1

1
1
tODop

tODop

2

ODopt

1
1
tODop

1

1
2
tODop

1

1
1
tODop

tODop 1

2
1

Fig. 6 The relationships between ODopst and ODopst−1 and the tracking results in t and t-1 for three cases
(a–c) described in the algorithm
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space. If we have Nm continuous hand movement units, we can get Nm multi-view embed-
ding spaces denoted by Si with transfer matrixWi respectively. The estimation of a gesture in
time t could be converted to a classification problem among those embedding spaces. And as
a result, a continuous gesture can be reconstructed by the combination of some primitive
embedding spaces, see Fig. 7.

The posteriori probability of each class Si is in formula (8). The priori probability of every
class could be set to a constant, so that only class-conditional probability of each class is
unknown.

P Si
.
Fvt

� �
¼ p Fvt

.
Si

� �
P Sið Þ

.XNm

j¼1

p Fvt
.
S j

� �
P S j

� � ð8Þ

Given learned mapping function y=WTx, we consider that the class conditional proba-
bility of an embedding space Si is determined by the number and distance of neighbors that
fall in the near region of y in the embedding space. So by adopting Gaussian kernel function
in formula (9), where d represents Euclidean distance between y and its neighbors, we finally
could get the posteriori probability of each embedding space.

P Fvtð jSiÞ ¼
XNm

j¼1

1ffiffiffiffiffiffi
2π

p
σ
exp −

1

2

d j−μi

σi

	 
2
" #

ð9Þ

Based on the above analysis, in the following, we propose a Subspace Filtering Algo-
rithm (SFA) (see Fig. 8) to find potential movement manifold spaces to guide tracking and
estimation.

At initialization time step t=1, the position Yi
t of the input Fvt is located in every

embedding space Si (i=1,…,Nm) by transfer matrix Wi in parallel. And all the
neighbors (denoted by NBi

t) of Yi
t are found within domain radius. Then put those

most similar to Yi
t into the set Ebesti

t respectively in Si. Then compute the posteriori
probability for each embedding space Si. The result of this step is the bilinear
interpolation of 3D information of Ebesti (i=1,…,Nm).

In the second stage, put the potential spaces into set PSt (the number is Nps),
whose posterior probability is larger than the threshold, and put the left into set LSt

(the number is Nm-Nps). These two sets will be kept and updated in the whole process
of recognition by Update (PS, LS). At last Kalman filter is added in each potential
movement manifold space to predict the position of motion in t+1 denoted by Y⌢iþ1

i .
And in the following time steps, SFA will first consider those spaces in PSt, whose
predicted Y⌢tþ1

i is near Yi
t+1. At last, if there are more than one candidates found in

A Gesture

S1 S2 S6
SNm……

P3 P4 P5 P6 P9 P10P8 P11P7P2 P12 P13P1

S3

Fig. 7 A continuous gesture is segmented discretely to 13 poses (P1-P13) and reconstructed by some
primitive embedding spaces (S1-SNm): (1) P1 and P2 by S1; (2) P3 and P4 by the combination S1 and S3; (3)
P5 -P7 by S2; (4) P8 -P13 by S6
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embedding spaces, then bilinear interpolate the 3D joint angles of those candidates as
the estimation result. At last, compute the posteriori probability for each Si by
function Posterior ( ) based on the formula (8) and (9).

For an instance, in Fig. 9, there are two primitive gestures with their embedding spaces Si
and Sj. The input video is recognized and tracked in both spaces in time t-2, t-1 and t. And
the estimation of 3D configuration is the bilinear interpolation of the results from two spaces.

Fig.8 The description for SFA.

Algorithm SFA (Subspace Filtering Algorithm) 

Notation: Wi represents the transfer matrix;

Nm represents the number of 2D embedding space;

 Nps represents the number of 2D embedding space in PS;

Initialization step, at time t=1:

For (i=1,…,Nm) parallel do

);,(

);,(

,||||//);(

Si.spaceembeddingininput theofposition//Locate;

t
i

t
i

t
i

t
i

t
i

ijj
t

i
t

i
t
i

t
i

t
i

NBYPosterior

NBYGetbestEbest

NBnbeveryfornbYYrGetNeighboNB

FVWY

=

∈<−=

=

ε

End for

Update (PSt, LSt); 

For (i=1,…, Nps) parallel do   // Nps is the number of Si in PSt.

)(1 tt
i

t
i PSYerKalmanFiltY ∈=+ ;

End for 
Return ioninterpolatbilinearoffunctionmeans)//BI());(3(Re t

i
t EbestDGetBIsult =

At time t+1:

For ( i=1,…,Nm) do

;1 NULLEbest t
i =+

End for 

If PSt =NULL then 

PSt+1=LSt;

End if 

For every Si in PSt parallel do

;11 ++ = t
i

t
i FVWY

If ε<− ++ ||ˆ|| 11 t
i

t
i YY

);,(

);,(

);(

11

11

11

++

++

++

=

=

t
i

t
i

t
i

t
i

t
i

t
i

t
i

NBYPosterior

NBYGetBestEbset

YrGetNeighboNB

End if 

Update(PSt+1, LSt+1);

For (i=1,…,Nps) parallel do 

);( 12 ++ = t
i

t
i YerKalmanFiltY

     End for 

     Return Resultt+1=BI (Get3D (PSetbest));

Fig. 8 The description for SFA
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However, from the time t+1, the mapping of the input is far from the prediction in Si, so Si is
removed from PS, the algorithm will only consider Sj until it does not meet the criteria or end
of estimation.

6 Experimental results

The gesture estimation system developed by VS2010, OpenCV and OpenGL library,
was executed on a laptop running with Core 2 Duo CPU at 2.40 GHz and 3G RAM.
The camera’s resolution was 640×480, but we reduced the images to 320×240 as raw
data.

6.1 Learning multi-view manifold

Some specific settings were taken according to our method in LPP Code shared by [15] to
learn multi-view manifolds for primitive gestures in matlab7.0. Firstly, we used all pixels of
a training image as its feature vector to construct neighbor graph. Then Fvs of training
images are put into dimensionality reduction learning process, getting multi-view motion
embedding spaces. The training datasets were created as explained in section 3.

Figure 10 shows the 3D embedding space for two primitive gestures in section3.
Specifically Fig. 10a–c are three views of the embedding space for primitive gesture1 and
Fig. 10c–e are three views of the embedding space for primitive gesture2. The transfer
matrixes are in formula (10) and (11) respectively. From the 3D point cloud, we can see there
are still some intrinsic geometric structures embedded, so we tried to reduce them to 2D
spaces. The two transfer matrixes are in formula (12) and (13). The results are promising,
from Fig. 11, we can easily find out the structure of the training data: (1) Data in the
horizontal direction have the tendency of hand’s grasping motion from open to close; (2)
Data in the vertical direction have the tendency of rotation of the hands. These results proved
that our Fv is valid for manifold learning of multi-view continues gesture and the best
dimension of embedding space is 2D.

Fig. 9 Two motions with their embedding spaces and the input video is recognized and tracked by SFA
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For recognition part, we quantified and rounded these two 2D primitive embedding
spaces by linear transformation: T1 (u=[(x+1.7)×500], v=[(−(y−1))×500]) and T2
(u=[(x+2.5)×500], v=[(−y-0.4)×500]), then stored them in two images.

WT
1 ¼

−0:9995 −0:0087 0:0043 0:0287 −0:0055 −0:0028 −0:0014
−0:9878 0:0335 0:0036 0:1512 −0:0092 −0:0073 −0:0053
0:9773 −0:2105 0:0052 0:0149 −0:0029 0:0143 −0:0040

8<
:

9=
;ð10Þ

WT
2 ¼

−0:2619 0:1688 0:2007 0:4640 0:4687 0:3967 0:5197
0:9177 −0:0768 0:2025 −0:2405 −0:0262 −0:1379 0:1823
0:9882 −0:1165 −0:0548 −0:0729 0:0097 0:0195 0:0306

8<
:

9=
;ð11Þ

(a) Primitive gesture1 (b) Primitive gesture1 (c) Primitive gesture1

(d) Primitive gesture2           (e) Primitive gesture2 (f) Primitive gesture2

Fig. 10 Three views of three-dimensional manifolds learned by LPP for primitive gesture1 (a–c) and
gesture2 (d–f). There are still some intrinsic geometric structures embedded

(a) Primitive gesture1 (b) Primitive gesture2

Fig. 11 Two-dimensional manifolds images learned by LPP for primitive gesture1 (a) and gesture2 (b). Points
in the horizontal direction have the tendency of hand’s grasping motion from open to close and points in the
vertical direction have the tendency of rotation of the hands
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WT
1 ¼ −0:9995 −0:0087 0:0043 0:0287 −0:0055 −0:0028 −0:0014

−0:9878 0:0335 0:0036 0:1512 −0:009 −0:007 −0:005

� �
ð12Þ

WT
2 ¼ −0:2619 0:1688 0:2007 0:4640 0:4687 0:3967 0:5197

0:9177 −0:0768 0:2025 −0:2405 −0:0262 −0:1379 0:1823

� �
ð13Þ

In addition, we built a primitive gesture set3 including ten classes of static poses from
Chinese Sign Language database. Each class represents an Arabic number and has 10
samples from arbitrary views including rotation around Z axis. There are total 100 samples.
Same to the method mentioned above, this set was reduced to 2D embedding space by
transfer matrix WT (formula (14)) and stored in an image, see Fig. 12. From this manifold,
we can see, the data are arranged mainly according to the number and direction of figure tips,
and most classes are clustered in near region. But there still has some singular points which
may have interference in classification, and it will become worse for recognition for

Fig. 12 A two-dimensional manifold learned by LPP for ten classes of static poses from Chinese Sign
Language

(a) Fixed viewpoint (b) Rotation viewpoints

Fig. 13 Recognition and tracking paths for (a) test data of gesture2 from two fixed viewpoint and (b) test data
of gesture2 from two rotation viewpoints, all of them can achieve 100 % recognition rate
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continuous gestures which has a large amount of training samples. So it is wise to compute
the rotation parameter of Z axis and translational motion along the X axis and the Y
beforehand and train each primitive continuous gesture separately.

WT
3 ¼ −0:7248 0:0092 0:1307 0:5591 0:1959 0:2425 0:2184

0:8813 −0:2347 0:1094 0:2088 −0:1225 −0:2625 0:1691

� �
ð14Þ

6.2 Recognition

Our SFA can estimate any combination of primitive gestures. If we have N primitive
gestures, and each gesture has M static poses, then the total number of gestures that can
be recognized is in formula (15), where S is the number of duplicate poses.

XMN−S

i¼1

Ci
NM−S ð15Þ

So if given enough primitive gestures, we can estimate numerous gesture at last. The
worst case for SFA is that a continuous gesture does not absolutely identical to any primitive
gesture, but its static poses can be found in some primitive spaces. That is such gesture
cannot be tracked only within one embedding space and it need to be examined in every
spaces in every time step, so it will cost much time for recognition, but the accuracy can be
achieved.

In Fig. 13, two groups of test data were selected from training data of primitive gesture2
to illustrate the recognition and tracking paths for continuous gestures in embedding spaces.
In Fig. 13a test data from two fixed viewpoint and in Fig. 13b test data from two rotation
viewpoints, and all of them can achieve 100 % recognition rate.

(a) Set1 and the estimation result; (b) Set2 and the estimation result; (c) Set3 and the estimation result;

Fig. 14 Three test data sets with their estimation results
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Fig. 15 The recognition rate versus the value of radius of neighborhood in SFA for three testing sets in
Fig. 14
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By being fully aware of the hand shape and personalized action might have some the
influence on the accurate of recognition, we have test three kinds of gesture sets to show
generality of our approach. Specifically, Set1 was selected from training data of gesture1,
Set2 and Set3 were taken from monocular video of two real hands’ personalized grasping.
Figure 14 shows the training data of primitive gesture1 and their estimation results. Figure 15
illustrates the recognition rate versus the value of radius of neighborhood in SFA. The radius
is adjusted from 1 to 10. It is clear that with the increase of radius, the recognition rate will
rise until the peak is reached and then it keeps stable. For Set2 and Set3, some singular
points located in far away from training data in embedding spaces, so the recognition rate
cannot achieve 100 %. But in the real application, we can program to fit it between two
identified poses.

6.3 Label and tracking

ODop based tracking method compared with ellipse based method in [3] is shown in Fig. 16.
For visualization purposes, ODop is colored by green and OBB is colored by red. We can see
when the distance between objects is relatively far, both tracking algorithms could get
satisfied results (Fig. 16a and b), however, in the case objects are closer (Fig. 16c–e), the
contour of hand is colored by blue, misclassification by ODop is less than that ellipse. On the
other hand, both algorithms can operate in real-time. Figure 17 is our gesture estimation
system.

(a) Frame1    (b) Frame2     (c) Frame3     (d) Frame4      (e) Frame5

Fig. 16 Comparison for our ODop based tracking method (MOTA) and ellipse based method in [3]

Fig. 17 The proposed gesture estimation system based on manifold learning from Monocular videos
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7 Conclusions

In this paper, we proposed a generative framework that efficiently recovers intrinsic
3D hand configurations and viewpoints from monocular image sequences. Firstly, a
LPP-based filtering algorithm converts the multiple-motion recognition and reconstruc-
tion problems to a classification among embedding spaces, and proximity query and
prediction process within embedding spaces. Then a multiple-hand tracking method is
presented which works well when hands move in complex trajectories and occlude
each other. In the future, we will investigate how to improve accuracy and speed of
segmentation algorithm, and how to identify effective gesture effectively.
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