
Noname manuscript No.

(will be inserted by the editor)

Image-driven Unsupervised 3D Model Co-segmentation

Juncheng Liu
1,2 · Paul L. Rosin

2 · Xianfang Sun
2 · Jianguo Xiao

1 ·
Zhouhui Lian

1⇤

the date of receipt and acceptance should be inserted later

Abstract Segmentation of 3D models is a fundamen-
tal task in computer graphics and vision. Geometric
methods usually lead to non-semantic and fragmen-
tary segmentations. Learning techniques require a large
amount of labeled training data. In this paper we ex-
plore the feasibility of 3D model segmentation by tak-
ing advantage of the huge number of easy-to-obtain
2D realistic images available on the Internet. The re-
gional color exhibited in images provides information
that is valuable for segmentation. To transfer the seg-
mentations, we first filter out inappropriate images with
several criteria. The views of these images are esti-
mated by our proposed texture-invariant view estima-
tion Siamese Network. The training samples are gen-
erated by rendering-based synthesis without laborious
labeling. Subsequently, we transfer and merge the seg-
mentations produced by each individual image by ap-
plying registration and a graph-based aggregation strat-
egy. The final result is obtained by combining all seg-
mentations within the 3D model set. Our qualitative
and quantitative experimental results on several model
categories validate e↵ectiveness of our proposed method.

1 Introduction

Segmentation of 3D models is a fundamental task in
both the graphics and vision communities. Plausible
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Fig. 1: The basic idea of our proposed method: segment-
ing 3D models by taking advantage of freely-available
realistic 2D images online. Our system takes as inputs a
set of 3D models, a search keyword for image retrieval,
and segmentations are yielded accordingly.

segmentations facilitate not only the perception of 3D
models but also subsequent processing. Despite its im-
portance, current segmentation methods are far from
satisfactory. The traditional methods leverage 3D mesh
properties for segmentation. They often yield over seg-
mentations and semantically meaningless parts. Recently,
there are more and more methods proposed for seman-
tic 3D model segmentations. However, the learning-
based methods always require a large amount of hand-
labeled training data, which is very time and e↵ort con-
suming to obtain. Labeling faces of 3D meshes is much
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Fig. 2: The pipeline of our proposed method. The lower flowchart illustrates the main procedures for segmentation.
The upper chart describes the training stage of view estimation network in detail.

more di�cult than labeling the pixels of images. Be-
sides, humans always hold di↵erent opinions upon seg-
mentation, which makes it di�cult to obtain a set of
consistent training samples.

In this paper we explore the possibility of segment-
ing 3D models by taking advantage of realistic 2D im-
ages which are freely available online. The key obser-
vations are as follows: a large portion of real-world ob-
jects can be properly segmented according to their color
and texture attributes, e.g. the chairs in Figure 1. 3D
models tend to be produced without assigned textures,
whereas 2D images always carry abundant depictions of
color and textures. Since we have large availability of
both 2D realistic images and 3D models, we can bridge
the two types of representation and segment 3D models
with the guidance of 2D images without supervision.

The main di�culties of realizing the aforementioned
idea lie in the following aspects: (1) 3D models always
exhibit spatially variant geometric details and are col-
orless (also know as white models) while realistic im-
ages contain abundant texture and material depictions,
but are lacking explicit geometric information. These
bring di�culties when establishing correspondences be-
tween these two types of data; (2) One image contains
only one single-view depiction of an object while the 3D
model has a full description of the mesh geometry; (3)
Segmentations are always not consistent between dif-
ferent 2D images. Di↵erent images may favor di↵erent
segmentations. The designed method should be able to

integrate these individual segmentations in a plausible
way.

We address the above problems by the following
strategies which also summarize the main contributions
of our paper:

• We propose a texture and geometry-invariant view
estimation Siamese network that precisely recovers
the camera pose of a realistic image.

• The training samples are generated and selected by
an automatic rendering-based synthesis pipeline.

• Di↵erent segmentations are fused by a graph-based
merging scheme, which allows a co-segmentation both
image-model and model-model-wise.

• The method is unsupervised. Namely, no labeled
data is required throughout the whole process.

2 Related Work

Geometry based segmentations. There exist many
methods [1, 2] which segment 3D meshes according to
their geometry properties such as shape diameter func-
tion, surface curvatures, normal distributions, etc.

These methods often cluster faces with similar ge-
ometric properties, and the level of segmentation can
usually be controlled by parameters. However, these
hand-crafted features are insu�cient for exploring the
semantic attributes of di↵erent parts.

Learning based segmentations. There is a vast
amount of existing work on learning based segmenta-
tion of 2D images, among which the fully-convolutional
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network (FCN) [3] is a most widely-used architecture.
Based on it, several improvements have been made to
achieve a higher accuracy [4].

Learning techniques can also be utilized in the seg-
mentation of 3D meshes. Kalogerakis et al. [5] employ
a Conditional Random Field for a consistent face label-
ing. Guo et al. and Shu et al. [6, 7] use hand-crafted
classic local mesh descriptors along with Convolutional
Neural Networks (CNNs) for more comprehensive high-
level features. Recently, Kalogerakis et al. [8] proposed
end-to-end projective convolutional networks that seg-
ment projected views instead, and integrate them using
a Conditional Random Fields (CRF) layer.

As a semi-supervised algorithm, Wang et al. [9] seg-
ments a set of models by active learning and a small
number of user interactions.

Compared to these existing methods, the main ad-
vantage of our method is that we do not need labeled
training data which is time and energy consuming to
obtain. We use segmentations contained in realistic im-
ages instead.

Image-guided segmentation. Several previous works
have already explored 3D model segmentation with im-
age guidance. [10] treats a 3D model as a collection of
2D projection silhouettes. Labeled 2D images are used
as guidance and the segmentation is transfered to the
3D model by calculating bi-class Hausdor↵ distances.
However, their method requires many labeled 2D im-
ages and only silhouettes are used which is insu�ciently
informative. The method described in [11] is the most
similar to our work. It extracts small patches of ren-
dered views of 3D models and realistic images. SIFT
flow [12] is then used to calculate similarities. Patches
are aligned by optimizing a free-form deformation func-
tion. Having the dense correspondence, the segmenta-
tion is achieved by aggregating all segments in each
image.

Shape co-segmentation. There are also data-driven
methods that segment a set of models all at once such
as [13, 14]. These methods often deal with a set of
models instead of one-by-one as do traditional methods,
and usually higher accuracy is achieved by integrating
segmentations produced by each individual model. The
main di�culty lies in the correspondence establishment
since there exist large diversity within each model set.

Our proposed method shares the similar idea with [15]
yet we face di↵erent circumstances: their method aims
to discover a view of natural images, which always in-
cludes a main object and a background, while as we will
see in the following sections, our segmentation-oriented
pipeline only leverages “clear-background” realistic im-
ages. In our observation, it is always easy to obtain
these images with a transparent background by includ-
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Fig. 3: Image segmentations by k-means. Top row: 5
original retrieved images after pruning. Middle row: the
corresponding segmentation results (colomap indicat-
ing di↵erent segmented regions) by setting k = 2. Bot-
tom row: the Lab color space (L component for lightness
is discarded) of all pixels along with 2 cluster centroids
marked as green stars.

ing this requirement in the search specification. There-
fore we do not need to consider the background con-
tained in images. Secondly, we randomly pick textures
for model rendering while they leave the model untex-
tured. We adopt this strategy to force our network to
learn a common feature when two objects have di↵erent
color and geometric appearance.

3 Method overview

The basic idea of our system is to leverage the large
availability of natural images and use them for 3D model
segmentation without supervision. Since 3D models tend
to be generated without textures, using the appearance
of its image counterparts can be more informative for
segmentation. We expect the two kinds of data will
complement each other and enable improved segmen-
tation accuracy.

Overall, our system has a training stage and a main
processing stage as illustrated in Figure 2. The main
processing stage deal with the 3D model segmentation
task while the training stage trains a Siamese network
which is used to estimate camera poses in which objects
are depicted in realistic images.

In the training stage, we train the so-called texture-
invariant view estimation Siamese network which is de-
signed to be robust to the large variations of geometry
and topology, and more significantly, the textures ex-
hibited in realistic images. We achieve this by automat-
ically synthesizing a large number of training samples
by rendering randomly textured aligned models.
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Fig. 4: Image pruning. The first column is unsuitable
because each image contains multiple instances. The
second column is discarded due to the homogeneous
appearance of each object. The third column shows the
images .

To segment a 3D model set, we first pre-segment
each individual model into smaller patches. Meanwhile,
we retrieve a 2D realistic image dataset according to the
user-specified searching keywords. After pruning inap-
propriate images, we estimate the camera pose of each
kept image. 3D models are subsequently rendered based
on these estimated camera poses. Then we establish
dense pixel-level correspondences between realistic im-
ages and rendered views of the 3D models to be seg-
mented. The segmentations then can be transfered to
the surfaces of 3D models. These di↵erent segmenta-
tions are aggregated by a graph-based majority voting
strategy and smoothed by alpha-expansion multi-label
graph cut [16]. Finally, by combining all the segmen-
tations yielded by each model, we achieve consistent
co-segmentation results.

Inputs. Our system takes as input a set of aligned
3D models of the same kind, a search keyword for image
retrieval, and an estimated minimum number of parts
n.

Outputs. Final results are segmented 3D models
each having approximately n parts.

4 Image Pruning and 3D Model

Pre-segmenation

To obtain 2D realistic images we search the Internet by
providing a key word indicating the semantic category
such as “chairs”, “guitars” etc. The first row of Figure 3
presents some examples retrieved by using “chairs” as
the key word.

We also require the retrieved images to have a trans-
parent background which is indicated in the alpha chan-
nel. Since there is such a large number of images avail-
able, we can assume there are is always a su�cient
amount of images that satisfy this criterion.

However, not all of the retrieved images are appro-
priate for our application as shown in Figure 4. To avoid

(a) model and sampled view
points

(b) sample rendered views

Fig. 5: 60 sampled view points on a soccer ball surface,
marked as yellow dots.

multiple instances being included in a single image, we
first filter out images with more than one connected
foreground region.

As the images are used to provide valuable infor-
mation for segmentation, the abundance of color is ex-
pected to be neither too plain nor too complex. Images
of homogeneous textures provide little useful informa-
tion of segmentation while images with too many re-
gions are likely to be over-segmented or merely complex
texture patterns. The complexity of a 2D image is de-
termined in Lab color space to eliminate the influence
of illumination as shown in the middle and bottom rows
of Figure 3.

Clustering centroids are then discovered by apply-
ing the k-means method in this space. The number of
clusters is indicated manually. However, we have ob-
served that most realistic images of artificial objects
contain a very limited number of color regions. There-
fore we simply use two cluster centroids for robustness.
That is, the object in each image is split into two parts.
However, this does not mean each model would finally
be cut into two individual parts. We will discuss the
aggregation of segmentations in detail in the following
sections. Having the centroids in the color space, we
calculate the variance between the centroids and the
variance within each cluster. The variance is regarded
as a measurement of color abundance. We remove all
images which have too small between-cluster variance
and too large within-cluster variance. The images with
too small between-cluster variance usually contains ho-
mogeneous color and texture, which convey little infor-
mation for segmentation. Examples of images with dif-
ferent between-cluster variance are shown in Figure 6.

This pruning will not discard all problematical im-
ages. However, for each 3D model we only select the M
most visually similar images for segmentation (M = 5
in our implementation). The similarity can be calcu-
lated by any vision-based descriptors (we employ HoG [17]).
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Fig. 6: Color complexity measured by between-cluster
variance. The larger the number is, the more varied the
color of the image is. Improper images are marked with
red square.

As a prerequisite, we segment each 3D model into
small patches using geometric properties such as cur-
vature and normal consistency. This procedure does
not have to be accurate, and the model can be over-
segmented. We employ shape diameter function [18] in
our implementation.

5 Texture-invariant View Estimation

5.1 Network Architecture

A crucial step of linking 3D models and 2D images is
the view estimation of 2D images. Traditional meth-
ods use hand-crafted descriptors such as HoG [17] and
SIFT [19] to retrieve the most similar view. However,
they are not suitable for our circumstances due to the
following reasons: most of 3D models often come with-
out any texture or material assignments. The rendered
views of them are hence colorless as shown in Figure 5b.
On the other hand, the 2D images available on the In-
ternet are mostly depictions of real objects with abun-
dant color information. Additionally, the objects in im-
ages are not necessarily identical to the 3D models in
terms of geometry and topology. Therefore, the features
we used for view estimation must be invariant and suit-
able for both di↵erent textures and topologies.

To achieve the texture and topology-invariant fea-
tures, we train a Siamese network [20] consisting of
two parallel networks sharing the same parameters. The
outputs of the last layers are then fed to a contrastive
loss function, which calculates the similarity between
the two inputs. We adopt the architectures of AlexNet [21]
without the fully connected layers.

Fig. 7: Examples of textures and textured models. Each
row shows the original model along with its 4 textured
counterparts.

In the training stage, the network takes as input
pairs of training images (x1,x2) labeled as “genuine” (y =
1) or “impostor” (y = 0). The loss function is defined
as:

L(x1,x2) = yD + (1� y)max(� �D, 0), (1)

where D = kf(x1)� f(x2)k is the feature distance and
f(·) is the output of the last layer of the network. The
methodology of generating and choosing genuine and
impostor pairs will be introduced in Section 5.2 and
5.3. This objective function favors a feature space where
the genuine samples are projected close to each other
while impostors pairs are should be placed far apart
from each other.

We use a soft-threshold � as a limit when the dis-
tance increases.

5.2 Training Sample Synthesis

In this section we describe the strategy we use to gen-
erate the training samples fed into the aforementioned
network.

We first prepare a 3D model repository including
various aligned 3D models of the same category as well
as a texture database. 60 view points are sampled as the
vertices of a soccer ball as illustrated in Figure 5. For
each view, each 3D model is automatically parametrized
and assigned with 10 randomly picked textures from the
describable texture dataset [22]. These view points and
textures are then used to render each individual model,
forming an N ⇥ 60⇥ 10 image set where N is the num-
ber of models. Figure 7 shows two textured chairs along
with their shading images. In the training stage, two
rendered views are granted a “genuine” label if they
come from the same view point and an “impostor” oth-
erwise.

The 3D repository should cover variations of a cer-
tain kind of objects and be aligned beforehand. We ex-
pect the variations of shapes and textures to reinforce
the ability of generalizations of our network.
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Fig. 8: Matching process. From left to right: the pre-
segmented 3D model, the dense correspondence be-
tween rendered view of model and 2D image, the label-
transfered samples on mesh, the labeled 3D patches by
majority voting.

Please note that the models we use for training sam-
ple synthesis do not necessarily coincide with the mod-
els to be segmented as long as they share the same
semantic label and are aligned in the same way. In our
experiments however, we use the same shape set for
both tasks.

5.3 Label Generation

As stated in the previous section, two rendered views
with the same camera pose are regarded as a “genuine”
pair and “impostor” otherwise. We add more restric-
tions for more precise and e↵ective learning. Note that
the network is expected to be able to extract discrim-
inative view-sensitive features of both rendered images
of 3D models and 2D realistic images regardless of the
color attributes and the geometry layout. Therefore, a
genuine pair should be identical in terms of camera pose
and di↵erent in other aspects (texture and geometry).
On the contrary, we should leave everything identical
except for the camera pose for the impostors, that is, we
select impostor pairs from rendered views of the same
model and the same texture.

By using this strategy, the network is forced to learn
features that are only sensitive to the view di↵erence
and invariant to the color and geometry.

5.4 View Estimation

After training, we calculate the features of all the train-
ing samples, forming a view-sample feature space. Note
the view index of each training sample is already known.
When estimating the camera pose of an image, we first
extract its feature by feeding it to the trained network.
The estimated view is the one voted by the nearest
neighbors in the view-sample feature space (10 neigh-
bors in our experiment).

(a) (b) (c)

Fig. 9: Graph-based segmentation merging. (a) Seg-
mentation with a smaller threshold where only 2
components are produced. (b) Segmentation with a
larger threshold where 7 components are produced. (c)
Graph-cut smoothed result. Note the small pieces are
smoothed out.

6 Segmentation transfer and aggregation

After the view estimation we are now able to estab-
lish the dense correspondence between a 2D image and
the rendered view of a model. Since we have the fore-
ground mask for both the two types of images, we first
uniformly sample a fixed number of points in the fore-
ground regions denoted as sets X1 and X2. Then we
employ the Coherent Point Drift (CPD) [23] method to
register X1 and X2 as shown in Figure 8. Let � denote
the mapping function which maps p 2 X2 to p0 2 X1.

We keep face indices while rendering views. There-
fore the sampled points on rendered views can be di-
rectly mapped to the 3D mesh. For simplicity, we as-
sume labels are directly transfered to the 3D mesh from
the segmented images. Naturally, the pre-segmented 3D
patches partition X2 into smaller subsets Pi. Then Pi is
assigned with the label which has the most occurrences
as in Figure 8 in the following scheme:

l(Pi) = argmax
`2L

X

p2Pi

1{�(�(p)) = `}, (2)

where 1(·) is an indicator function and �(·) represents
the image segmentation which assigns a label to each
position of an image from a label set L. The above equa-
tion describes the procedure of majority voting within
a 3D patch.

For each 2D image we repeat the above procedure,
after which we expect to have M segmentations for the
same model, where M is the number of 2D images we
used for each model (M = 5 in our implementation).
We have evaluated the face coverage rate of using dif-
ferent number of 2D images as shown in Figure 10.
Since we have already estimated the view of each im-
age in Section 5, we are able to compute the covered
faces of each corresponding image (by visibility test).
In Figure 10 we evaluate three types of face coverage
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Fig. 10: Face coverage rate with number of used images.

rates: face-based without referring to other peer mod-
els (face w/o Coseg), face-based with referring to other
peer models (face w/ Coseg) and patch-based with re-
ferring to other peer models (patch w/ Coseg) which
is the method used in our implementation. From the
figure it can be observed that by using individual face-
based method only 70% of faces are covered when 5
images are used, the number increases to 80% when
referring to other peer models. When using the more
e�cient patch-based method, almost all visible faces
are covered by using only 5 images. Therefore in our
implementation we only use 5 images for each model’s
segmentation, which is already su�cient to cover all
visible faces.

We then use a graph-based method to aggregate seg-
mentations. Specifically, each patch Pi is considered as
a node on graph. Two patches Pi and Pj are connected
by an edge with a weight wi,j which is set to the num-
ber of segmentations which assign the two patches the
same label as follows:

wi,j =
MX

k=1

1{lk(Pi) = lk(Pj)}, (3)

where lk represents the segmentation favored by image
k = 1, . . . ,M . The edges with weights which are smaller
than a given threshold � are discarded from the graph:

w0
i,j = max (0, wi,j � �). (4)

We increase the threshold from 1 to M until the desired
number of connected components n is reached as illus-
trated by Figure 9. That makes the segmented model
have a number of parts no less than the indicated parts
number.

The graph-based aggregation does not require con-
sistent labels across di↵erent segmentations. In fact it
only checks whether a tuple {Pi, Pj} belongs together or

Fig. 11: Samples of the view retrieval. For each tuple,
left is the query image and right is the retrieved view.
For simplicity, we only use the rendered views of one
same model for each category.

not. As a side-e↵ect, it always causes over-segmentation.
For a more smooth result, we filter out small isolated
pieces by applying the alpha-expansion multi-label graph
cut [16]. The smoothing e↵ects can be observed in Fig-
ure 9c. After this we obtain an aggregated segmentation
Si for each model i = 1, . . . , N .

7 Co-segmentation across models

After obtaining each individual segmentation, we are
now able to propagate and integrate these segmenta-
tions across models. It is reasonable to believe a set of
models bring more useful information hence a higher ac-
curacy can be achieved and outliers can be eliminated.
Since the models are all aligned, we register them to-
gether by again employing the CPD algorithm. Similar
to Equation 2, we redefine the mapping function � as a
mapping between pairs of models:

l(Pi) = argmax
`2L

X

p2Pi

1{S(�(p)) = `}, (5)

where S replacing the � assigns each face a label.

Similarly, the graph-based aggregation is again ap-
plied:

wi,j =
NX

k=1

1{lk(Pi) = lk(Pj)}, (6)

where lk this time represents the segmentation favored
by each individual model.

Subsequently, we repeat the graph-based aggrega-
tion steps as in Equation 4 until the final results are
yielded. Multiple iterations can be run for the co-segmentation
to converge to the optimum.
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(a) feature space of pretrained
VGG16 network

(b) feature space of our texture-
variant Siamese network

Fig. 12: Feature space. Dimensionality reduced to 2
for visualization by t-SNE [24]. The colormap indi-
cates each individual rendering view. View indices are
marked at the mean position of all member points.

8 Experiments

8.1 Datasets and Environments

We evaluate our method on 8 categories (chairs, gui-
tars, wine glass, lamps, cups,tables, glasses, pliers) of
objects chosen from two public available datasets Shape
COSEG 1 and Labeled-PSB 2 Dataset [5, 25]. These
categories are more likely to have better segmentations
with the guidance of images. Textures are chosen from
the describable texture dataset 3, consisting of 5640
images, organized according to a list of 47 categories.
There are 120 images for each category. Image sizes
range between 300⇥300 and 640⇥640, and the images
contain at least 90% of the surface representing the cat-
egory attribute [22].

We use the Blender Smart UV project to automat-
ically parametrize 3D models for texturing. The views
of 3D models are also rendered in Blender with the
Cycles renderer and a default Lambert material. The
proposed texture-invariant Siamese network is imple-
mented in python and Tensorflow with GeForce GTX
Titan X graphics card. The rest of our algorithm is im-
plemented in MATLAB 2018a environments.

8.2 Analysis of Learned Features

We provide a collection of view retrieval results in Fig-
ure 11. To explain its e↵ectiveness, we analyze the fea-

1 http://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/
ssd.htm
2 https://people.cs.umass.edu/~kalo/papers/

LabelMeshes/index.html
3 https://www.robots.ox.ac.uk/~vgg/data/dtd/index.

html

Fig. 13: Two samples of segmentation results yielded
by di↵erent methods. From left to right: our result
with co-segmentation procedure, our result without co-
segmentation procedure, mesh random walk, shape di-
ameter function and template learning. Note the four
legs of the chair are segmented into one single part by
our method while all other methods segment them into
separate parts.

tures learned by our proposed texture-invariant net-
work in this section. The strategy we used in the train-
ing sample preparation aims to emphasize the view dif-
ference while eliminating the other factors such as tex-
tures and geometric variations. Therefore we expect the
distribution of the learned feature space is able to map
samples with the same rendered views close to each
other. As illustrated in Figure 12b, the features learned
by our network exhibit clustered distribution with each
cluster representing the corresponding view.

Additionally, we observe concentric spirals formed
by the feature distribution with similar views sharing
a similar radius. This validates that our proposed net-
work is capable of learning “view-sensitive” features by
our task-specific design. For comparison, we also vi-
sualize the distributions of features produced by the-
used CNN architecture VGG16 [26] in Figure 12a, in
which we could not observe similar patterns as seen in
Figure 12b. This is due to the fact that a recognition-
oriented network such as [26] is sensitive to color and
appearance while our strategy forces the learning to fo-
cus on the views.

8.3 Qualitative and Quantitative Results

In this section we present both qualitative and quanti-
tative evaluation results of our segmentation method.

It is relatively di�cult to evaluate our proposed
method since it is unsupervised and neither a geometry-
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chairs guitars wine glass lamps
RI CD HD RI CD HD RI CD HD RI CD HD

Random Walk 0.36 0.38 0.24 0.26 0.55 0.23 0.3 0.55 0.19 0.1 0.31 0.078
Shape Diameter 0.15 0.48 0.18 0.13 0.22 0.068 0.25 0.67 0.098 0.11 0.26 0.084

Template Learning 0.12 0.16 0.15 0.12 0.19 0.052 0.096 0.24 0.018 0.076 0.18 0.042
Ours w/o coseg 0.1 0.24 0.089 0.15 0.4 0.046 0.22 0.49 0.08 0.085 0.15 0.049
Ours w/ coseg 0.076 0.22 0.055 0.051 0.068 0.018 0.17 0.44 0.037 0.057 0.16 0.024

Table 1: Segmentation accuracy of COSEG.

cups tables glasses pliers
RI CD HD RI CD HD RI CD HD RI CD HD

Random Walk 0.43 1.0 0.22 0.25 0.34 0.16 0.29 0.79 0.21 0.48 0.35 0.42
Shape Diameter 0.61 1.1 0.34 0.42 0.45 0.27 0.33 0.4 0.29 0.3 0.5 0.24

Approximate Convexity 0.14 0.54 0.061 0.092 0.11 0.091 0.33 0.37 0.28 0.28 0.15 0.29
Ours w/o coseg 0.25 0.82 0.11 0.21 0.24 0.13 0.3 0.42 0.24 0.39 0.5 0.21
Ours w/ coseg 0.11 0.37 0.054 0.15 0.35 0.066 0.17 0.54 0.13 0.29 0.36 0.17

Table 2: Segmentation accuracy of Labeled-PSB.

Fig. 14: Failure cases. Categories such as animals and
hands may not be suitable to use our method as tex-
tures within such objects are too homogeneous to pro-
vide useful segmentation hints.

based nor a pure semantic segmentation. We leverage
the realistic 2D images to guide the segmentation of 3D
models, which brings in semantics to some degree. How-
ever, since we do not import labels in our processing,
the segmented parts are meaningless (without a seman-
tic label attached) as opposed to most of the learning-
based segmentation methods. Therefore we mainly use
geometry-based evaluation criteria for our quantitative
evaluations. For most learning based method, recogni-
tion rate is usually used to evaluate their segmentation
accuracy. To compare with them, we first estimate the
label correspondences and then calculate the face recog-
nition accuracy. We also provide representative segmen-
tation results picked from each category for qualitative
judgments in Figure 15. The number of segmented parts
might be slightly di↵erent due to the graph-based ag-
gregation and graph-cut smoothing.

We compare our proposed method with both geome-
try and semantic learning-based methods. For geometry-
based evaluation, we use Rand Index (RI), Cut Dis-
crepancy (CD) and Hamming Distance (HD). Since the

Shape COSEG dataset provides ground-truth segmen-
tations, we evaluate the accuracy accordingly.

It is also worth noticing that there is not a uniform
way to semantically segment a 3D object. For instance,
a chair can be decomposed into 3 or 4 individual parts
with di↵erent granularity.

Table 1 and 2 collect the evaluation results of four
individual categories regarding the 3 criteria. Since our
method is unsupervised therefore we only compare with
methods requiring no labeling. For comparison, we use
two representative geometric methods: mesh random
walk [1] and shape diameter function [18] which we use
for our pre-segmentation as well as a template learning
co-segmentation method [27] (results available only for
COSEG dataset) and an approximate convexity analy-
sis method [28] (results available only for L-PSB dataset).
We also provide the accuracy of the segmentation be-
fore cross-model co-segmentation (named as “ours w/o
coseg”) along with the final results (named as “ours w/
coseg”). Figure 13 also provides sample segmentation
results produced by each method.

From Table 1 and 2 we can observe significant im-
provements compared with traditional methods. This
is due to the use of 2D images contributes semantic in-
formation which facilitates the segmentation. The legs
of chairs, for instance, are supposed to belong to the
same segment since they have the same semantic la-
bel. However, without the guidance of images, tradi-
tional geometry-based methods are always incapable of
accomplishing this. However, this advantage is not ev-
ident in the first two metrics we employed. It can be
captured by the Hamming distance as it calculates the
region correspondence which links our produced labels
and the ground-truth semantic labels. That also ex-
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Fig. 15: Examples of segmentation results. Instances are chosen from “chairs”,“guitars”,“wine glass” and “lamps”
within the Shape COSEG dataset. For each tuple, left is the segmented and right the original model. Note that
the colormaps of these models are independent, that is, the color does not necessarily indicate the correspondence.

plained why the Hamming distance error of our method
is much lower compared with the other two metrics.

Our method outperforms other methods in most
cases. Especially the Hamming distance shows the sig-
nificantly improved semantic accuracy by leveraging im-
age guidance. In some non-rigid categories such as glasses
and pliers, where diverse poses are presented, the accu-
racy might drop due to the inaccuracy of mesh corre-
spondence. It can be observed that the accuracy im-
proves significantly by applying the co-segmentations

across models. The merging of each individual segmen-
tation converges to the highest plausibility and the out-
liers are eliminated.

To compare with learning-based methods, we first
estimate the label correspondence between the labels
produced by our method and the ground-truth labels
in a manner similar to bidirectional Hamming Distance:

'(i) = argmax
j

kSi
1 \ Sj

2k. (7)
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The recognition rate is calculated as the portion of
the correctly labeled faces as shown in Table 3. It is
worth noticing that our method is not learning-based
hence no labeled training data is required compared to
other methods in Table 3.

ours 1 2 3 4
chairs 92.5 - 96.1 97.7 -
guitars 97.9 - 98.0 - -
goblets 95.3 - 97.2 - -
lamps 96.5 - 93.0 98.2 -
cups 94.6 96.3 93.8 98.3 96.0
tables 93.4 99.0 99.5 99.3 91.3
glasses 87.1 94.4 96.6 96.8 92.7
pliers 83.2 92.2 95.5 96.0 82.7

Table 3: Recognition rates of our method and other 4
learning-based methods for each category (1: Kaloger-
akis et al. [5], 2: Kalogerakis et al. [8], 3: Xie et al. [29],
4: Xu et al. [30]). The recognition rates of some meth-
ods for COSEG dataset are missing or partially missing
since the methods were not tested over those categories.

9 Conclusion and Limitations

In this paper, we proposed a 3D model segmentation al-
gorithm with the guidance of realistic images. The key
observation is that the images of some certain kinds of
real-world objects bring useful information of segmen-
tations and hence can be used for 3D mesh collection
segmentation.

We showed a complete pipeline integrating 3D model
pre-segmentation, images pruning, view estimation, cor-
respondence establishments and model co-segmentation.
Additionally, we proposed a view estimation Siamese
network along with a training sample synthesis and se-
lection strategy.

We demonstrated that leveraging 2D images can
significantly outperform existing unsupervised methods
on the task of 3D model segmentation. Experiments
have been conducted in four chosen categories of Shape
COSEG datasets and qualitative and quantitative re-
sults both support our conclusion.

Limitations. The main drawback is that our pro-
posed method could only be applied to certain kind of
objects whose 2D images are expected to convey useful
information of segmentation. When dealing with other
objects such as animals and hands as shown in Fig-
ure 14, our method may fail as their fur can be ho-
mogeneous, from which useful segmentation hints are
unlikely to be extracted. Our method is also incapable
of dealing with objects with extremely large diversity

within 3D models as the co-segmentation may fail due
to the inaccuracy of correspondence. Lastly, since we
do not use labels, the produced labels do not carry se-
mantic meaning.
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