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a b s t r a c t

Online gesture-based interaction with characters has become a more natural and
informative human–computer interface with the popularity of new interactive devices
(e.g., Kinect and Leap Motion). In this paper, a new feature descriptor named Segmented
Directed-edge Vector (SDV) is proposed. This simple and yet quite effective descriptor is
able to capture the characteristics of visual oriental characters. Moreover, we explicitly
build the mappings from SDVs to features in a subspace by a modified Locality Preserving
Projections (LPP) method with stroke class constraints. These mappings can yield mean-
ingful subspace structures for larger character sets. Extensive experiments on the online
interactive system demonstrate the robustness of our method to various issues in gesture-
based character's input, such as unnatural breaks, overlapped or distorted radicals, and
unconscious or quivering trajectories. Our system can still achieve accurate recognition
when accumulative errors occur with complex characters.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

One of the most attractive means of natural human
computer interaction (HCI) is gesture-based character input
and recognition (GCIR) that provides more interactive
controls [1]. GCIR has great potentials in real applications,
such as disable assistance, interactive computer games,
smart appliances and writing trainings. In the field of
computer vision (CV), GCIR can be regarded as the merge
of character recognition and gesture recognition. Research-
ers have developed numerous approaches in both areas
[1–5], but their feature extractors and classifier learning
algorithms may be inapplicable to GCIR. On one hand,
various ‘static’ features, such as gradient features, Gabor
features and SIFT, are widely used for handwritten chara-
cter recognition [6–8]. Nevertheless, radicals or strokes of
a character are likely to be overlapped or distorted in the
context of GCIR that is different from the traditional way of
writing, does not have a writing plane (paper or touch
screen) and does not have any demarcation for writing.
On the other hand, classical classifiers including Hidden
Markov Models (HMM) [9] and Conditional Random Field
(CRF) [10] provide an elegant framework to label gestures.
Unfortunately, these methods can hardly render the real-
time performance for larger label sets, when there are, for
example, thousands of or more gestures (characters). GCIR
also demands an incremental learning ability that embraces
new characters and writing styles in an online fashion.
Furthermore, learning strategies in GCIR have to be robust
to outliers brought by unconscious quivering trajectories
and accumulative errors.

In this paper, we put forwards a novel online interactive
character's input and recognition method by gestures based
onmanifold learning. We utilize the directional and ordered
information of gestures in GCIR to design a new descriptor
that has a good discriminative ability in recognition.
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We study subspace learning techniques and learn explicit
mappings to recover intrinsic configurations for numerous
characters, and obtain real-time and high recognition rate.
The main contributions of this paper are given below:
(1)
 We propose a new stroke-level feature representation
for dynamic gestures, named Segmented Directed-
edge Vector (SDV). SDV is invariant to scale variations,
while combining both geometrical and dynamical
information of trajectories. SDVs have a low repetition
rate on a large character set, and have a reasonable
tolerance of writing fault.
(2)
 We use SDVs and a modified Locality Preserving
Projections (LPP) [11,12] to obtain robust and efficient
recognition results on large character sets. Stroke
class-specific constraints are incorporated in order to
generate more meaningful subspace structures and
explicit mapping functions for classification. We are
able to achieve real-time recognition by applying a
parallel searching technique.
(3)
 We implement the proposed practical gestures-based
character input and recognition (GCIR) system using
depth images from monocular videos captured by a
Kinect sensor and the features obtained in (2) above.
This system can tackle unnatural breaks, overlapped or
distorted radicals, and unconscious or quivering tra-
jectories in real applications. Moreover, we build a
semantic associative database that can accelerate the
speed of the system further.
2. Related work

In recent years, studies in the computer vision area on
motion recognition and shape reconstruction have wit-
nessed a growing interest in subspace analysis and mani-
fold learning techniques [13–15]. Given a set of high-
dimensional data points, manifold learning techniques aim
at discovering the geometric properties in a data space,
including the Euclidean embedding, intrinsic dimensional-
ity, connected components and homology. Manifold learn-
ing techniques can be classified into linear ( MDS [16], LDA
and PCA [17], etc.) and non-linear (ISOMap [18], LLE [19],
LE [20], RML [21], LTSA [22], etc.) methods, which have
been applied to face and gait recognition and show impre-
ssive performance.

Locality Preserving Projections (LPP) [11] attempt to
find optimal linear approximations to the Eigen-functions
of the Laplace Beltrami operator on a manifold. This
technique seeks to preserve the intrinsic geometry of data
and the local structures. In contrast to other manifold
learning algorithms, LPP possess a remarkable advantage
that can generate an explicit mapping. Furthermore, com-
pared with HMM or CRF methods, LPP are defined every-
where of training data and may be simply applied to any
new data. Many improvements on LPP have emerged in
the previous few years. Yen et al. [23] proposed an
orthogonal neighborhood preserving discriminant analysis
(ONPDA) method, which effectively combines the charac-
teristics of LDA and LPP. Wong and Zhao [24] proposed two
feature extraction algorithms derived from LPP, i.e., the
supervised optimal locality preserving projection (SOLPP)
algorithm and the normalized Laplacian-based supervised
optimal locality preserving projection (NL-SOLPP). These
algorithms use both local information and class informa-
tion to model the similarity of data.

The construction of a neighbor weight graph is the key
to subspace learning algorithms [11–15]. Recent studies
show the influence of the graph construction on clustering
measures and resultant subspace representation. Tradi-
tional construction methods using k-nearest neighbors
typically lead to an unbalanced graph and thus unfavor-
able performance. Zhang et al. [12] developed an unsu-
pervised Graph-optimized Locality Preserving Projections
(GoLPP), which incorporated graph construction into the
LPP objective function, and thus obtained a joint learning
framework for graph construction and projection optimi-
zation. GoLPP produce a changeable graph instead of a
fixed one in LPP. The graph is gradually updated in an
iterative process, and naturally takes transformed data.
However, the adjacent graph of GoLPP is initialized by the
traditional k-nearest neighbor method without class infor-
mation. Therefore, the initialization may take some het-
erogeneous samples for optimization. Yu et al. proposed a
hypergraph-base manifold learning in [25]. By varying the
neighborhood size, they generated a set of hyperedges for
each image and its visual neighbors. The joint learning of
the image labels and hyperedge weights automatically
modulates the effect of hyperedges. In [26], they adopted
sparse representation to select a few neighbors of each
data point that span a low-dimensional affine subspace
passing near that point. After that, the whole alignment
strategy is utilized to build the manifold.
3. Framework of the proposed approach

In this paper, we focus on developing a gesture based
and real-time recognition method with interactive input
on large visual oriental character sets. We name the
trajectory of a control hand from the beginning to the
end in the process of writing a character, including the
transition edges between strokes, as a Visual Oriental
Character (VOC). Oriental characters refer to stroke and
structure based characters, such as the characters in
Chinese, Japanese and Korean. Examples for structured
oriental characters are shown in Fig. 1. Besides, English
letters and Arabic numerals can also be written in this
style using gestures.

Our approach consists of four steps, i.e., control hand
recognition and tracking, directed-edges quantified and
optimization, feature extraction and selection, and large
dataset training and classification, as shown in Fig. 2. In
the off-line pre-processing stage, SDVs are computed for
VOCs in training sets. Then, a subspace learning algo-
rithm is adopted to learn explicit mappings of features
from high-dimensional feature spaces to features in low-
dimensional embedding spaces. Moreover, a semantic
associative database is built to accelerate the speed of
input. In the on-line processing stage, we segment the
control hand from depth images obtained from monocular
videos captured by a Kinect sensor. And a stroke tracking
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and optimization method generates SDVs for input VOCs.
Finally, the recognition among embedding spaces can be
achieved by explicit mapping functions and the k-nearest
neighbor searching.
4. Feature extraction

4.1. Directed-edges quantified and optimization

Hand detection and tracking are important steps prior
to feature extraction that influences the recognition accu-
rate rate. As the Kinect sensor combined with an infrared
sensor is capable of adding depth information to 2D
images, it is more reliable to segment hands from various
complex backgrounds. Besides, the Kinect for Windows
SDK supports human skeleton with joint recognition
and tracking, so it is easy to get the coordinates of an
operator's hand end in depth space. In our work, we take
the operator's right hand end as his or her valid control
hand.

A directed-edge is defined as the vector between two
turning valid control points, and its direction is consistent
Fig. 1. Examples of three types of oriental characters with their VOCs.

Fig. 2. The framework of gesture-based character in
with the writing order. Direction-edges are often quanti-
fied approximately into discrete directions. Different from
the uniform eight-direction quantifying [4], we take into
account the characteristics of gesture based input which is
controlled by human's arm linkage mechanism. A test of
drawing fifty Chinese characters ‘in the air’ by ten people is
conducted. The results show that the edges of horizontal
and vertical directions are easily drawn, but those edges in
slanting directions are not. Therefore, we enlarge the
quantified range of the even directions to 7arctan(1/3)
and that of the odd directions to 7(π/4-arctan(1/3)). In
order to make trembling lines or curves be standard
directed-edges (see some examples in Fig. 3), we adopt
the abstraction-integrate algorithm based on polygon
approximation proposed in [27]. For some characters with
curves, more than one style can be added to improve the
robustness of the recognition.

4.2. Segmented directed-edge vector

Simply, we can take an eight dimensional directed-edge
vector DV¼{d1, d2, d3,…, d8} as the feature for a VOC, where
each entry corresponds to a direction and its value is the
total number of directed-edges performed in that direction.
DVs have both statistic and ordinal information for VOCs,
but lack strong discriminate abilities. For example, two
simple different VOCs have the same DVs in Fig. 4(a).
Furthermore, as VOCs become complex, the probabilities
of the directed-edges falling in eight directions are prune to
equal values, and thus the repetition rate of VOC sets greatly
increases.

We propose a segmented directed-edge vector (SDV) as
a new presentation for the VOC. SDV is defined as:

SDVsn ¼ fDVsn
1 ;DVsn

2 ; :::;DVsn
dng ¼ fV1;V2;…;Vtng; ð1Þ

where sn is the segmented size, and there are sn direction-
edges assigned to the directional entry i (i¼1,…,dn).
put and recognition through manifold learning.
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sn Influences the discriminant ability. dn is determined by
sn and represents the total number of directed-edges in a
VOC. tn is the total number of components in a SDV. Both
sn and tn are artificially set beforehand. tn (tnZdn�8) is
always larger than the total number of strokes of the most
complex VOC in a training set. Furthermore, we make zero
padding in the short vector.

SDVs are simple and yet effective representations for
VOCs, and have the merits as follows:
(1)
Fig.
quan
strat
grap
SDVs have low repetition rates even when the VOC sets
are large. To our best knowledge, there is no available
pubic database for VOCs so far, and some of the
existing online character databases such as Kuchibue
and Nakayosi (for Japanese), SCUT-COUCH 2009 (for
Chinese), and CASIA-OLHWDB (for Chinese) do not
contain the trajectory data between strokes [4], so we
3. Some examples for quantified VOCs generated by directed-edges
tified and optimization algorithm in training sets. For clear demon-
ion, we make every vertex of segments some pixels apart in this
hic representation.

Fig. 4. Schematic SDVs for two simple Chinese characters: (a) SDVs are
have to build a new VOC database. It is reported that
one thousand Chinese characters are enough for daily
communication in an article [28], so we build a new
feature database VC0, in which every SDV is set to have
tn dimensions.
(2)
 SDVs have the ability to make similar characters have
similar geometric and statistic features with a good
choice of sn. If sn is set to be too small, tn increases.
A larger sn corresponds to a lower discrimination. If
sn equals to the total number of direction-edges of a
VOC, SDVs degenerate to DVs. For example, in Fig. 4
(a), SDVs of two different simple characters are the
same with a large ns, but different with sn¼5 in
Fig. 4(b). Other examples for two complex characters
are shown in Fig. 5. There are three settings of sn, i.e.,
the total number of direction-edges of DVs, sn¼10,
and sn¼5, and their SDVs are illustrated in Fig. 5(a
and g), Fig. 5(b, c) and (h, i), and Fig. 5(d, e, f) and
(j, k, l) respectively. We can see from these figures
that the first eight components of their SDVs are of
the same geometry when ns¼5, reflecting the same
parts of the two characters. This property is quite
important to preserve the neighborhood structure in
the manifold learning steps as discussed in the next
section. And with some experiments, we found that
ns¼5 is the best choice for training set VC0. The
repetition rate of SDVs (with ns¼5) is 0.8% in con-
trast to 2.5% of DVs.
(3)
 SDVs have fault tolerance for wrong VOCs. SDVs can
reduce calculation errors in eight directions to some
extent. A directed-edge written in a wrong direction
only influences at most eight components and leaves
out the others.
(4)
 SDVs are scale invariant for VOCs. We develop SDVs
upon the statistics for directed-edges that are inde-
pendent of the length of a single directed-edge.
same with ns¼10; (b) SDVs are different with ns¼5.



Fig. 5. Schematic DVs and SDVs of two VOCs. (a, g): DVs; (b, c, h, i): SDVs with ns¼10; (d, e, f, j, k, l): SDVs with ns¼5.

Table 1
An example for fuzzy membership degree matrix U.

Radical class
no.

The total number of
strokes

SDV1 SDV2 … SDVN

1 1 0.05 0.25 … 0
1 2 0.2 0.5 … 0
1 3 0.5 0.25 … 0
1 4 0.2 0 … 0.25
1 5 0.05 0 … 0.5
1 – 0 0 … 0
1 Nsi 0 0 … 0
2 – 0 0 … 0
– – 0 0 … 0
Nr – 0 0 … 0
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5. Learning embedding spaces

In this section, we use SDVs and subspace learning
methods to obtain robust and efficient recognition for
a large VOC dataset. The algorithmic procedure of our
C-GoLPP (classified GoLPP) based algorithm for visual
character manifold learning is stated as follows.

5.1. Constructing initial fuzzy adjacency graph

Here, we incorporate radicals and the total number of
strokes as category constraints since radicals and strokes are
typically used for index of words in a dictionary of oriental
characters (such as Chinese characters). Characters belonging
to same radical class are partly similar, and similar characters
probably have similar numbers of strokes. Therefore, in our
method, characters are firstly classified by radicals and listed
according to the total number of strokes in every radical
class. Then, characters having the same stroke number form
a sub-class in a radical class. These category constraints are
stored in a fuzzy membership degree matrix U such as the
one used in FCM [29]. For example, a matrix with four
adjacent classes is shown in Table 1, where adjacent neigh-
bors are specified in advance. The adjacent graph for GoLPP
[11] made by U will work during all iterations.

In order to generate the similarity of two feature
vectors, the difference between two SDVs is considered,
so is the difference of the total numbers of directed-edges
(denoted by Ns) as shown in (2). The parameter a (ar1)
determines the weights of these two types of differences.
This similarity includes the global geometry of a character,
so it is robust to the stroke sequence order varying with
users. Qij in (3) represents the unified possibility that VOCi
belongs to class j.

Pij ¼ expð�ðαjjSDVi�SDVjjj2þð1�αÞjNsi�NsjjÞ=σ1Þ ð2Þ

Qij ¼ ∑
Nc

k ¼ 1
ðuik�ujkÞ2 ð3Þ
Nc¼ ∑
Nr

k ¼ 1
ðNr � NsiÞ ð4Þ

When the fuzzy membership degree matrix is available,
similarities between two VOCs in the adjacent matrix S are
assigned by

Sij ¼ PijQ ij ð5Þ

5.2. Computing explicit mapping functions

Let the set of input instances be FV ¼ fFvi ¼ SDViARd;

i¼ 1; :::;Ng. Let us also assume that the set of the points in
the embedding space corresponding to the Fvi (i¼1,2,…, N}
is Y ¼ fyiARe; i¼ 1; :::;Ng. In the above representations of FV
and Y, d (d¼tn) is the dimensionality of the feature space
and e is the dimensionality of the embedding space. The
explicit mapping functions are computed in the following
steps. For more details, please refer to [12].

Step 1: Calculate the explicit mapping matrix W by
solving the following generalized eigenvalue problem in
(6) and (7).

FvLFvTw¼ λFvDFvTw ð6Þ
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Fvi-yi ¼WTFvi ð7Þ
where D is a diagonal matrix whose entries are column
sums of S. L¼D�S is a Laplacian matrix. Both matrices
FvLFv

T
and FvDFv

T
are symmetric and positive semi-

definite.
Step 2: Update adjacent matrix as shown in (8), where

η is a trade-off parameter.

Sij ¼
expð�jjWTFvi�WTFvjjj2=ηÞ

∑n
j ¼ 1 expð�‖WTFvi�WTFvj‖2=ηÞ

ð8Þ

Step 3: Calculate the value of objective function J(W, S)
as shown in (9).

min
W ;Sij

JðW ; SÞ ¼ tr½ðWTFvFvTWÞ�1WTFvLFvTW �þη∑i;j ¼ 1 Sij ln Sij

s:t: ∑
n

j ¼ 1
Sij ¼ 1; ði¼ 1; :::;nÞ; SijZ0 ð9Þ

Step 4: Literately conduct Step 2 and Step 3, until the
difference between two adjacent values of J(W,S) is less
than the threshold value. Meanwhile, an explicit mapping
function (7) is computed.

5.3. Subspace learning for training data

We use a writing pad to generate a large number of
characters fromwhich we calculate the SDVs of Zhengkai-font
Fig. 6. The embedding spaces for dataset VC0

Fig. 7. Embedding spaces for a small da
and standard stroke order for offline training. Fig. 6 illustrates
the embedding spaces for a large Chinese character dataset
VC0 by C-GoLPP and GoLPP respectively. Then, we select 140
Chinese VOCs to compare C-GoLPP and GoLPP on the perfor-
mance of subspace learning for a smaller data set as shown in
the Fig. 7. Figs. 6 and 7 show that both methods can reveal the
mode of training data when the size of data set is small.
Similar characters in the high dimensional data space also
locate closely and present regular structures in the 2D
embedding space. When the data set becomes large, our
method performs more stable so that all the characters are
evidently clustered according to their categories and stroke
numbers.
5.4. Subspace learning with combined features

For offline handwritten character recognition, image
based offline features (e.g. Gabor, Gradient, SIFT, Character-
SIFT, etc.) are used in manifold learning methods [30–31].
They are discriminative when working with deformable
handwritten characters, but these features can hardly work
well for VOCs. VOCs exhibit more complicated shapes with
additional trajectories between valid strokes as seen in
Fig. 8. Meanwhile, users cannot always have a good control
of their hands when writing in the air unlike writing on
paper. Consequently, sever self-occlusion or overlapping
by our C-GoLPP in (a) and GoLPP in (b).

taset by (a) C-GoLPP and (b) GoLPP.
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may occur on VOCs, which greatly challenges image-based
features. For stroke-based SDVs, such overlaps may only
influence a small fraction of the feature vectors. More
importantly, SDVs make use of the sequence or order
information of VOCs that is able to discriminate characters
sharing similar shapes. In [8], overlapping trajectories and
strokes are identified by the directions of fingers. This
explicit identification is not always accurate and brings
additional computational complexities.

For some cases (such as having no overlaps or writing
in wrong orders), image-based feature will do some help,
so we also include a set of image-based features deno-
ted by IV¼{Ivi}, i.e., Hu moments, with a weight fw as
complementary features to SDVs. This inclusion is able
to improve the recognition accuracy since these image-
based features are informative for recognition in normal
cases without self-overlaps. The similarity of image-based
features is represented in (10), and similarities between
two characters in the initial adjacent matrix S are assi-
gned by (11).

Iij ¼ expð� J Ivi� Ivj J2=σ2Þ ð10Þ

Sij ¼ f wPijQ ijþð1� f wÞIij ð11Þ

5.5. Personalized subspaces

The frequency usage of characters may vary with users,
for every person has his/her own daily words. It is useful to
bring users' verbal habits into to subspace learning natu-
rally and gradually. The issue is an incremental learning for
manifolds which has been widely studied in recent years
[32–33]. LPP based manifold learning algorithms obtain
a locality preserving subspace for training data [12][33],
and it has more capability to absorb new data to some
extent by the learnt explicit mappings. As seen in Fig. 9,
three new Chinese characters, each surrounded by a box,
locate near the similar ones in the subspace. We attempt
to update the explicit mappings made by the LPP in
order to accommodate new training examples specific to
a certain user.

As the amount of data increases, the new mode of
dataset should be updated. We could adopt an incremental
semi-supervised subspace learning algorithm as proposed
Fig. 8. An example for different style characters: (a) printed; (b) hand-
written; (c) VOCs; (d) overlapped VOCs.
in [33] to create new personalized embedding spaces in
an online fashion. It is worth noting that our SDVs make
the updating easier as one can automatically estimate the
stroke class from a VOC, for the total number of directed-
edges in a VOC is twice of the number of strokes in an
oriental character. Thus, we are able to put new SDVs to the
classes having the same stroke number and update the
fuzzy membership degree matrix U and the adjacent
matrix S. Fifty Chinese characters are selected randomly
to verify the relationships between strokes and directed-
edges. The statistics are shown in Fig. 10, where the ratio of
the two is about 0.5, especially when characters are
getting more complex.
6. Experiments and results

6.1. Experimental configurations

We implemented gestures-based character input and
recognition (GCIR) system to evaluate our feature repre-
sentation and learning methods. This system was devel-
oped by VS2010, OpenCV2.4.3, QT4.8.3 and Kinect SDK 1.6,
running on a laptop running Core 2 Duo CPU at 2.00 GHz,
2G RAM, window7 operating system (32digit). The system
interface is divided into three parts (see the online part
in Fig. 2): (a) candidates are shown dynamically on the
top; (b) the input VOC is shown in the middle region;
(c) operator's finally choice demonstrated in the bottom
region.
Fig. 9. An example of personalized embedding space by adding three
new characters.

Fig. 10. The comparison of the total number of edges of visual characters
and that of their corresponding characters.



Table 2
The classification of one thousand Chinese characters and the repetition
rates of their SDVs in five embedding spaces by C-GoLPP and GoLPP.

Data
set

Character
no.

Frequency of usage
(%)

C-GoLPP
(%)

GoLPP
(%)

VC0 1–1000 85 1.1 1.5
VC1 1–140 50 0.1 0.0
VC2 141–380 20 0.3 0.5
VC3 381–500 5 0.0 0.0
VC4 501–1000 10 1.0 1.2

Fig. 11. The comparison of recognition rates between the combined
searching on four datasets {VC1,VC2,VC3,VC4} and searching on a single
dataset VC0.
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We define four states of the control hand: (A) start to
write a character; (B) writing a character; (C) finish writing a
character; and (D) choose a character output in the screen by
the recognition algorithm. States (A) and (C) can be con-
firmed by a pause of more than two seconds for the control
hand in the writing region. State (D) can be confirmed by a
pause of more than two seconds for the control hand in the
candidate characters region. The extraction of the directed
edges of a VOC is performed in State (B).

A simple semantic associative database is built to
accelerate the speed of input in advance. For every item,
the main key indices of characters in the training set, and
attributes are the indices of five characters, with which
five frequent used two-word phrases can be formed. The
users can simultaneously choose the input results and the
associative characters in a loop until no associative char-
acters are demonstrated or the user gives a new command.

6.2. Recognition results

The searching radius is critical for recognition accuracy
and efficiency as the density of points is not uniform over
the embedding spaces. We divided the training data into
four subsets {VC1, VC2, VC3, VC4} according to their daily
usage frequencies [28]. This division makes the densities of
embedding spaces well-distributed, but also decreases the
repetition rates of SDVs in four embedding spaces com-
pared with VC0 (see Table 2).

In the recognition process, we randomly selected one
hundred characters from VC0 as the testing set and ask five
users to write these characters in the standard stroke
orders. We project the feature vector of a VOC onto four
embedding spaces in parallel by the learnt mapping
functions, and sort the neighbors within the searching
radius by the similarity metric as the recognition results.
Fig. 11 shows the comparison of recognition rates on the
four datasets {VC1, VC2, VC3, VC4} and one larger dataset
(VC0) by using two proposed methods, C-GoLPP and GoLPP.
The recognition rate of four datasets combined searching
is higher than that in one large dataset for both methods.
The system outputs the five most similar candidates at the
top region of screen and let users make a final decision.
The system can yield a recognition rate as high as 99%.

Our SDVs work quite well when characters have the
overlapped radicals. We selected fifty complex characters
from the dataset VC1, and generated their SDVs by varying
the overlapping rate from 10% to 100%. The features for
VOCs with self-overlaps below 50% locate quite close to
the normal one, and produce a recognition rate above 60%
with the Diamond Search in real-time. Besides, we can
improve the rate by about 10% with a small amount of
human interactions. This experiment validate that SDVs
are robust to self-overlap caused by radicals or strokes of
characters.
6.3. Analysis

We can see from the above experiments that our
subspace learning based on LPP is able to render a simple
and fast recognition. The subspace learning provides
explicit mapping functions so that we can locate the
projected features by an efficient matrix multiplication in
the lower dimensional embedding subspace. Our method
can also achieve a high recognition rate due to the well-
defined learnt structure in the embedding space.

SDVs are established according to the stroke order and
may bring inconvenience to those users who cannot write
casually. However, this establishment of features follows
the oriental culture that well-educated people have to
write characters in a certain order. In our GCIR system,
exhausted users may give VOCs with more overlapped and
distorted radicals, where the image based features are
inapplicable. For this case, the SDVs can be assigned a
bigger weight, and the system can still perform well.
7. Conclusions

This work focuses on developing a robust, low-cost, stroke
order, gesture-based character's interactive input and recog-
nition framework and system for HCI based on segmented
directed-edge vectors (SDVs) and subspace learning methods.
By using Locality Preserving Projections (LPP), several of low-
dimensional embedding spaces for large character dataset are
learnt respectively according characters using frequencies.
Inferring character can be achieved by explicit mappings from
a visual input to the embedding spaces. Extensive experi-
mental results demonstrate qualitatively and quantitatively
that satisfactory recognition of visual oriental characters
can be achieved by our method robustly and efficiently. Our
proposed GCIR system can be used as an interface tool for
computers and an instruction tool for robots.
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